
Think Python

How to Think Like a Computer Scientist

2nd Edition, Version 2.2.20

Think Python

How to Think Like a Computer Scientist

2nd Edition, Version 2.2.20

Allen Downey

Green Tea Press
Needham, Massachusetts

Copyright © 2015 Allen Downey.

Green Tea Press
9 Washburn Ave
Needham MA 02492

Permission is granted to copy, distribute, and/or modify this document under the terms of the
Creative Commons Attribution-NonCommercial 3.0 Unported License, which is available at

.

The original form of this book is LATEX source code. Compiling this LATEX source has the effect of gen-
erating a device-independent representation of a textbook, which can be converted to other formats
and printed.

The LATEX source for this book is available from

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://www.thinkpython2.com

Preface

The strange history of this book
In January 1999 I was preparing to teach an introductory programming class in Java. I had
taught it three times and I was getting frustrated. The failure rate in the class was too high
and, even for students who succeeded, the overall level of achievement was too low.

One of the problems I saw was the books. They were too big, with too much unnecessary
detail about Java, and not enough high-level guidance about how to program. And they all
suffered from the trap door effect: they would start out easy, proceed gradually, and then
somewhere around Chapter 5 the bottom would fall out. The students would get too much
new material, too fast, and I would spend the rest of the semester picking up the pieces.

Two weeks before the first day of classes, I decided to write my own book. My goals were:

• Keep it short. It is better for students to read 10 pages than not read 50 pages.

• Be careful with vocabulary. I tried to minimize jargon and define each term at first
use.

• Build gradually. To avoid trap doors, I took the most difficult topics and split them
into a series of small steps.

• Focus on programming, not the programming language. I included the minimum
useful subset of Java and left out the rest.

I needed a title, so on a whim I chose How to Think Like a Computer Scientist.

My first version was rough, but it worked. Students did the reading, and they understood
enough that I could spend class time on the hard topics, the interesting topics and (most
important) letting the students practice.

I released the book under the GNU Free Documentation License, which allows users to
copy, modify, and distribute the book.

What happened next is the cool part. Jeff Elkner, a high school teacher in Virginia, adopted
my book and translated it into Python. He sent me a copy of his translation, and I had the
unusual experience of learning Python by reading my own book. As Green Tea Press, I
published the first Python version in 2001.

In 2003 I started teaching at Olin College and I got to teach Python for the first time. The
contrast with Java was striking. Students struggled less, learned more, worked on more
interesting projects, and generally had a lot more fun.

vi Chapter 0. Preface

Since then I’ve continued to develop the book, correcting errors, improving some of the
examples and adding material, especially exercises.

The result is this book, now with the less grandiose title Think Python. Some of the changes
are:

• I added a section about debugging at the end of each chapter. These sections present
general techniques for finding and avoiding bugs, and warnings about Python pit-
falls.

• I added more exercises, ranging from short tests of understanding to a few substantial
projects. Most exercises include a link to my solution.

• I added a series of case studies—longer examples with exercises, solutions, and dis-
cussion.

• I expanded the discussion of program development plans and basic design patterns.

• I added appendices about debugging and analysis of algorithms.

The second edition of Think Python has these new features:

• The book and all supporting code have been updated to Python 3.

• I added a few sections, and more details on the web, to help beginners get started
running Python in a browser, so you don’t have to deal with installing Python until
you want to.

• For Chapter 4.1 I switched from my own turtle graphics package, called Swampy, to a
more standard Python module, , which is easier to install and more powerful.

• I added a new chapter called “The Goodies”, which introduces some additional
Python features that are not strictly necessary, but sometimes handy.

I hope you enjoy working with this book, and that it helps you learn to program and think
like a computer scientist, at least a little bit.

Allen B. Downey

Olin College

Acknowledgments
Many thanks to Jeff Elkner, who translated my Java book into Python, which got this
project started and introduced me to what has turned out to be my favorite language.

Thanks also to Chris Meyers, who contributed several sections to How to Think Like a Com-
puter Scientist.

Thanks to the Free Software Foundation for developing the GNU Free Documentation Li-
cense, which helped make my collaboration with Jeff and Chris possible, and Creative
Commons for the license I am using now.

vii

Thanks to the editors at Lulu who worked on How to Think Like a Computer Scientist.

Thanks to the editors at O’Reilly Media who worked on Think Python.

Thanks to all the students who worked with earlier versions of this book and all the con-
tributors (listed below) who sent in corrections and suggestions.

Contributor List

More than 100 sharp-eyed and thoughtful readers have sent in suggestions and corrections
over the past few years. Their contributions, and enthusiasm for this project, have been a
huge help.

If you have a suggestion or correction, please send email to .
If I make a change based on your feedback, I will add you to the contributor list (unless
you ask to be omitted).

If you include at least part of the sentence the error appears in, that makes it easy for me to
search. Page and section numbers are fine, too, but not quite as easy to work with. Thanks!

• Lloyd Hugh Allen sent in a correction to Section 8.4.

• Yvon Boulianne sent in a correction of a semantic error in Chapter 5.

• Fred Bremmer submitted a correction in Section 2.1.

• Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book into beautiful
HTML.

• Michael Conlon sent in a grammar correction in Chapter 2 and an improvement in style in
Chapter 1, and he initiated discussion on the technical aspects of interpreters.

• Benoit Girard sent in a correction to a humorous mistake in Section 5.6.

• Courtney Gleason and Katherine Smith wrote , which was used as a case study
in an earlier version of the book. Their program can now be found on the website.

• Lee Harr submitted more corrections than we have room to list here, and indeed he should be
listed as one of the principal editors of the text.

• James Kaylin is a student using the text. He has submitted numerous corrections.

• David Kershaw fixed the broken function in Section 3.10.

• Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also fixed the Makefile
so that it creates an index the first time it is run and helped us set up a versioning scheme.

• Man-Yong Lee sent in a correction to the example code in Section 2.4.

• David Mayo pointed out that the word “unconsciously" in Chapter 1 needed to be changed to
“subconsciously".

• Chris McAloon sent in several corrections to Sections 3.9 and 3.10.

• Matthew J. Moelter has been a long-time contributor who sent in numerous corrections and
suggestions to the book.

viii Chapter 0. Preface

• Simon Dicon Montford reported a missing function definition and several typos in Chapter 3.
He also found errors in the function in Chapter 13.

• John Ouzts corrected the definition of “return value" in Chapter 3.

• Kevin Parks sent in valuable comments and suggestions as to how to improve the distribution
of the book.

• David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of encouragement.

• Michael Schmitt sent in a correction to the chapter on files and exceptions.

• Robin Shaw pointed out an error in Section 13.1, where the printTime function was used in an
example without being defined.

• Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl script that generates
HTML from LaTeX.

• Craig T. Snydal is testing the text in a course at Drew University. He has contributed several
valuable suggestions and corrections.

• Ian Thomas and his students are using the text in a programming course. They are the first ones
to test the chapters in the latter half of the book, and they have made numerous corrections and
suggestions.

• Keith Verheyden sent in a correction in Chapter 3.

• Peter Winstanley let us know about a longstanding error in our Latin in Chapter 3.

• Chris Wrobel made corrections to the code in the chapter on file I/O and exceptions.

• Moshe Zadka has made invaluable contributions to this project. In addition to writing the first
draft of the chapter on Dictionaries, he provided continual guidance in the early stages of the
book.

• Christoph Zwerschke sent several corrections and pedagogic suggestions, and explained the
difference between gleich and selbe.

• James Mayer sent us a whole slew of spelling and typographical errors, including two in the
contributor list.

• Hayden McAfee caught a potentially confusing inconsistency between two examples.

• Angel Arnal is part of an international team of translators working on the Spanish version of
the text. He has also found several errors in the English version.

• Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and improved many
of the other illustrations.

• Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting pedagogic com-
ments and suggestions about Fibonacci and Old Maid.

• Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2.

• Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.

• Christopher P. Smith caught several typos and helped us update the book for Python 2.2.

• David Hutchins caught a typo in the Foreword.

• Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is working on a Ger-
man translation of the book, and he caught a couple of bad errors in Chapter 5.

ix

• Julie Peters caught a typo in the Preface.

• Florin Oprina sent in an improvement in , a correction in , and a nice typo.

• D. J. Webre suggested a clarification in Chapter 3.

• Ken found a fistful of errors in Chapters 8, 9 and 11.

• Ivo Wever caught a typo in Chapter 5 and suggested a clarification in Chapter 3.

• Curtis Yanko suggested a clarification in Chapter 2.

• Ben Logan sent in a number of typos and problems with translating the book into HTML.

• Jason Armstrong saw the missing word in Chapter 2.

• Louis Cordier noticed a spot in Chapter 16 where the code didn’t match the text.

• Brian Cain suggested several clarifications in Chapters 2 and 3.

• Rob Black sent in a passel of corrections, including some changes for Python 2.2.

• Jean-Philippe Rey at Ecole Centrale Paris sent a number of patches, including some updates
for Python 2.2 and other thoughtful improvements.

• Jason Mader at George Washington University made a number of useful suggestions and cor-
rections.

• Jan Gundtofte-Bruun reminded us that “a error” is an error.

• Abel David and Alexis Dinno reminded us that the plural of “matrix” is “matrices”, not “ma-
trixes”. This error was in the book for years, but two readers with the same initials reported it
on the same day. Weird.

• Charles Thayer encouraged us to get rid of the semi-colons we had put at the ends of some
statements and to clean up our use of “argument” and “parameter”.

• Roger Sperberg pointed out a twisted piece of logic in Chapter 3.

• Sam Bull pointed out a confusing paragraph in Chapter 2.

• Andrew Cheung pointed out two instances of “use before def”.

• C. Corey Capel spotted the missing word in the Third Theorem of Debugging and a typo in
Chapter 4.

• Alessandra helped clear up some Turtle confusion.

• Wim Champagne found a brain-o in a dictionary example.

• Douglas Wright pointed out a problem with floor division in .

• Jared Spindor found some jetsam at the end of a sentence.

• Lin Peiheng sent a number of very helpful suggestions.

• Ray Hagtvedt sent in two errors and a not-quite-error.

• Torsten Hübsch pointed out an inconsistency in Swampy.

• Inga Petuhhov corrected an example in Chapter 14.

• Arne Babenhauserheide sent several helpful corrections.

x Chapter 0. Preface

• Mark E. Casida is is good at spotting repeated words.

• Scott Tyler filled in a that was missing. And then sent in a heap of corrections.

• Gordon Shephard sent in several corrections, all in separate emails.

• Andrew Turner ted an error in Chapter 8.

• Adam Hobart fixed a problem with floor division in .

• Daryl Hammond and Sarah Zimmerman pointed out that I served up too early. And
Zim spotted a typo.

• George Sass found a bug in a Debugging section.

• Brian Bingham suggested Exercise 11.5.

• Leah Engelbert-Fenton pointed out that I used as a variable name, contrary to my own
advice. And then found a bunch of typos and a “use before def”.

• Joe Funke spotted a typo.

• Chao-chao Chen found an inconsistency in the Fibonacci example.

• Jeff Paine knows the difference between space and spam.

• Lubos Pintes sent in a typo.

• Gregg Lind and Abigail Heithoff suggested Exercise 14.3.

• Max Hailperin has sent in a number of corrections and suggestions. Max is one of the authors
of the extraordinary Concrete Abstractions, which you might want to read when you are done
with this book.

• Chotipat Pornavalai found an error in an error message.

• Stanislaw Antol sent a list of very helpful suggestions.

• Eric Pashman sent a number of corrections for Chapters 4–11.

• Miguel Azevedo found some typos.

• Jianhua Liu sent in a long list of corrections.

• Nick King found a missing word.

• Martin Zuther sent a long list of suggestions.

• Adam Zimmerman found an inconsistency in my instance of an “instance” and several other
errors.

• Ratnakar Tiwari suggested a footnote explaining degenerate triangles.

• Anurag Goel suggested another solution for and sent some additional correc-
tions. And he knows how to spell Jane Austen.

• Kelli Kratzer spotted one of the typos.

• Mark Griffiths pointed out a confusing example in Chapter 3.

• Roydan Ongie found an error in my Newton’s method.

• Patryk Wolowiec helped me with a problem in the HTML version.

xi

• Mark Chonofsky told me about a new keyword in Python 3.

• Russell Coleman helped me with my geometry.

• Nam Nguyen found a typo and pointed out that I used the Decorator pattern but didn’t men-
tion it by name.

• Stéphane Morin sent in several corrections and suggestions.

• Paul Stoop corrected a typo in .

• Eric Bronner pointed out a confusion in the discussion of the order of operations.

• Alexandros Gezerlis set a new standard for the number and quality of suggestions he submit-
ted. We are deeply grateful!

• Gray Thomas knows his right from his left.

• Giovanni Escobar Sosa sent a long list of corrections and suggestions.

• Daniel Neilson corrected an error about the order of operations.

• Will McGinnis pointed out that was defined differently in two places.

• Frank Hecker pointed out an exercise that was under-specified, and some broken links.

• Animesh B helped me clean up a confusing example.

• Martin Caspersen found two round-off errors.

• Gregor Ulm sent several corrections and suggestions.

• Dimitrios Tsirigkas suggested I clarify an exercise.

• Carlos Tafur sent a page of corrections and suggestions.

• Martin Nordsletten found a bug in an exercise solution.

• Sven Hoexter pointed out that a variable named shadows a build-in function.

• Stephen Gregory pointed out the problem with in Python 3.

• Ishwar Bhat corrected my statement of Fermat’s last theorem.

• Andrea Zanella translated the book into Italian, and sent a number of corrections along the
way.

• Many, many thanks to Melissa Lewis and Luciano Ramalho for excellent comments and sug-
gestions on the second edition.

• Thanks to Harry Percival from PythonAnywhere for his help getting people started running
Python in a browser.

• Xavier Van Aubel made several useful corrections in the second edition.

• William Murray corrected my definition of floor division.

In addition, people who spotted typos or made corrections include Czeslaw Czapla, Richard
Fursa, Brian McGhie, Lokesh Kumar Makani, Matthew Shultz, Viet Le, Victor Simeone, Lars
O.D. Christensen, Swarup Sahoo, Alix Etienne, Kuang He, Wei Huang, Karen Barber, and Eric
Ransom.

xii Chapter 0. Preface

Contents

Preface v

1 The way of the program 1

1.1 What is a program? . 1

1.2 Running Python . 2

1.3 The first program . 3

1.4 Arithmetic operators . 3

1.5 Values and types . 4

1.6 Formal and natural languages . 4

1.7 Debugging . 6

1.8 Glossary . 6

1.9 Exercises . 7

2 Variables, expressions and statements 9

2.1 Assignment statements . 9

2.2 Variable names . 9

2.3 Expressions and statements . 10

2.4 Script mode . 11

2.5 Order of operations . 12

2.6 String operations . 12

2.7 Comments . 13

2.8 Debugging . 13

2.9 Glossary . 14

2.10 Exercises . 15

xiv Contents

3 Functions 17

3.1 Function calls . 17

3.2 Math functions . 18

3.3 Composition . 19

3.4 Adding new functions . 19

3.5 Definitions and uses . 20

3.6 Flow of execution . 21

3.7 Parameters and arguments . 21

3.8 Variables and parameters are local . 22

3.9 Stack diagrams . 23

3.10 Fruitful functions and void functions . 24

3.11 Why functions? . 24

3.12 Debugging . 25

3.13 Glossary . 25

3.14 Exercises . 26

4 Case study: interface design 29

4.1 The turtle module . 29

4.2 Simple repetition . 30

4.3 Exercises . 31

4.4 Encapsulation . 32

4.5 Generalization . 32

4.6 Interface design . 33

4.7 Refactoring . 34

4.8 A development plan . 35

4.9 docstring . 35

4.10 Debugging . 36

4.11 Glossary . 36

4.12 Exercises . 37

Contents xv

5 Conditionals and recursion 39

5.1 Floor division and modulus . 39

5.2 Boolean expressions . 40

5.3 Logical operators . 40

5.4 Conditional execution . 41

5.5 Alternative execution . 41

5.6 Chained conditionals . 41

5.7 Nested conditionals . 42

5.8 Recursion . 43

5.9 Stack diagrams for recursive functions . 44

5.10 Infinite recursion . 44

5.11 Keyboard input . 45

5.12 Debugging . 46

5.13 Glossary . 47

5.14 Exercises . 47

6 Fruitful functions 51

6.1 Return values . 51

6.2 Incremental development . 52

6.3 Composition . 54

6.4 Boolean functions . 54

6.5 More recursion . 55

6.6 Leap of faith . 57

6.7 One more example . 57

6.8 Checking types . 58

6.9 Debugging . 59

6.10 Glossary . 60

6.11 Exercises . 60

xvi Contents

7 Iteration 63

7.1 Reassignment . 63

7.2 Updating variables . 64

7.3 The statement . 64

7.4 . 66

7.5 Square roots . 66

7.6 Algorithms . 67

7.7 Debugging . 68

7.8 Glossary . 68

7.9 Exercises . 69

8 Strings 71

8.1 A string is a sequence . 71

8.2 . 72

8.3 Traversal with a loop . 72

8.4 String slices . 73

8.5 Strings are immutable . 74

8.6 Searching . 74

8.7 Looping and counting . 75

8.8 String methods . 75

8.9 The operator . 76

8.10 String comparison . 77

8.11 Debugging . 77

8.12 Glossary . 79

8.13 Exercises . 79

9 Case study: word play 83

9.1 Reading word lists . 83

9.2 Exercises . 84

9.3 Search . 85

9.4 Looping with indices . 86

9.5 Debugging . 87

9.6 Glossary . 87

9.7 Exercises . 88

Contents xvii

10 Lists 89

10.1 A list is a sequence . 89

10.2 Lists are mutable . 90

10.3 Traversing a list . 91

10.4 List operations . 91

10.5 List slices . 91

10.6 List methods . 92

10.7 Map, filter and reduce . 93

10.8 Deleting elements . 94

10.9 Lists and strings . 94

10.10 Objects and values . 95

10.11 Aliasing . 96

10.12 List arguments . 97

10.13 Debugging . 98

10.14 Glossary . 100

10.15 Exercises . 100

11 Dictionaries 103

11.1 A dictionary is a mapping . 103

11.2 Dictionary as a collection of counters . 104

11.3 Looping and dictionaries . 106

11.4 Reverse lookup . 106

11.5 Dictionaries and lists . 107

11.6 Memos . 109

11.7 Global variables . 110

11.8 Debugging . 111

11.9 Glossary . 112

11.10 Exercises . 113

xviii Contents

12 Tuples 115

12.1 Tuples are immutable . 115

12.2 Tuple assignment . 116

12.3 Tuples as return values . 117

12.4 Variable-length argument tuples . 118

12.5 Lists and tuples . 118

12.6 Dictionaries and tuples . 120

12.7 Sequences of sequences . 121

12.8 Debugging . 122

12.9 Glossary . 122

12.10 Exercises . 123

13 Case study: data structure selection 125

13.1 Word frequency analysis . 125

13.2 Random numbers . 126

13.3 Word histogram . 127

13.4 Most common words . 128

13.5 Optional parameters . 129

13.6 Dictionary subtraction . 129

13.7 Random words . 130

13.8 Markov analysis . 130

13.9 Data structures . 132

13.10 Debugging . 133

13.11 Glossary . 134

13.12 Exercises . 134

14 Files 137

14.1 Persistence . 137

14.2 Reading and writing . 137

14.3 Format operator . 138

14.4 Filenames and paths . 139

14.5 Catching exceptions . 140

Contents xix

14.6 Databases . 141

14.7 Pickling . 142

14.8 Pipes . 142

14.9 Writing modules . 143

14.10 Debugging . 144

14.11 Glossary . 145

14.12 Exercises . 145

15 Classes and objects 147

15.1 Programmer-defined types . 147

15.2 Attributes . 148

15.3 Rectangles . 149

15.4 Instances as return values . 150

15.5 Objects are mutable . 151

15.6 Copying . 151

15.7 Debugging . 152

15.8 Glossary . 153

15.9 Exercises . 154

16 Classes and functions 155

16.1 Time . 155

16.2 Pure functions . 156

16.3 Modifiers . 157

16.4 Prototyping versus planning . 158

16.5 Debugging . 159

16.6 Glossary . 160

16.7 Exercises . 160

17 Classes and methods 161

17.1 Object-oriented features . 161

17.2 Printing objects . 162

17.3 Another example . 163

xx Contents

17.4 A more complicated example . 164

17.5 The init method . 164

17.6 The method . 165

17.7 Operator overloading . 165

17.8 Type-based dispatch . 166

17.9 Polymorphism . 167

17.10 Debugging . 168

17.11 Interface and implementation . 169

17.12 Glossary . 169

17.13 Exercises . 170

18 Inheritance 171

18.1 Card objects . 171

18.2 Class attributes . 172

18.3 Comparing cards . 173

18.4 Decks . 174

18.5 Printing the deck . 174

18.6 Add, remove, shuffle and sort . 175

18.7 Inheritance . 176

18.8 Class diagrams . 177

18.9 Debugging . 178

18.10 Data encapsulation . 179

18.11 Glossary . 180

18.12 Exercises . 181

19 The Goodies 183

19.1 Conditional expressions . 183

19.2 List comprehensions . 184

19.3 Generator expressions . 185

19.4 and . 185

19.5 Sets . 186

19.6 Counters . 187

Contents xxi

19.7 defaultdict . 188

19.8 Named tuples . 189

19.9 Gathering keyword args . 190

19.10 Glossary . 191

19.11 Exercises . 192

A Debugging 193

A.1 Syntax errors . 193

A.2 Runtime errors . 195

A.3 Semantic errors . 198

B Analysis of Algorithms 201

B.1 Order of growth . 202

B.2 Analysis of basic Python operations . 204

B.3 Analysis of search algorithms . 205

B.4 Hashtables . 206

B.5 Glossary . 209

xxii Contents

Chapter 1

The way of the program

The goal of this book is to teach you to think like a computer scientist. This way of think-
ing combines some of the best features of mathematics, engineering, and natural science.
Like mathematicians, computer scientists use formal languages to denote ideas (specifi-
cally computations). Like engineers, they design things, assembling components into sys-
tems and evaluating tradeoffs among alternatives. Like scientists, they observe the behav-
ior of complex systems, form hypotheses, and test predictions.

The single most important skill for a computer scientist is problem solving. Problem solv-
ing means the ability to formulate problems, think creatively about solutions, and express
a solution clearly and accurately. As it turns out, the process of learning to program is an
excellent opportunity to practice problem-solving skills. That’s why this chapter is called,
“The way of the program”.

On one level, you will be learning to program, a useful skill by itself. On another level, you
will use programming as a means to an end. As we go along, that end will become clearer.

1.1 What is a program?

A program is a sequence of instructions that specifies how to perform a computation. The
computation might be something mathematical, such as solving a system of equations or
finding the roots of a polynomial, but it can also be a symbolic computation, such as search-
ing and replacing text in a document or something graphical, like processing an image or
playing a video.

The details look different in different languages, but a few basic instructions appear in just
about every language:

input: Get data from the keyboard, a file, the network, or some other device.

output: Display data on the screen, save it in a file, send it over the network, etc.

math: Perform basic mathematical operations like addition and multiplication.

conditional execution: Check for certain conditions and run the appropriate code.

2 Chapter 1. The way of the program

repetition: Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used,
no matter how complicated, is made up of instructions that look pretty much like these.
So you can think of programming as the process of breaking a large, complex task into
smaller and smaller subtasks until the subtasks are simple enough to be performed with
one of these basic instructions.

1.2 Running Python

One of the challenges of getting started with Python is that you might have to install
Python and related software on your computer. If you are familiar with your operating
system, and especially if you are comfortable with the command-line interface, you will
have no trouble installing Python. But for beginners, it can be painful to learn about sys-
tem administration and programming at the same time.

To avoid that problem, I recommend that you start out running Python in a browser. Later,
when you are comfortable with Python, I’ll make suggestions for installing Python on your
computer.

There are a number of web pages you can use to run Python. If you already have a fa-
vorite, go ahead and use it. Otherwise I recommend PythonAnywhere. I provide detailed
instructions for getting started at .

There are two versions of Python, called Python 2 and Python 3. They are very similar, so
if you learn one, it is easy to switch to the other. In fact, there are only a few differences you
will encounter as a beginner. This book is written for Python 3, but I include some notes
about Python 2.

The Python interpreter is a program that reads and executes Python code. Depending
on your environment, you might start the interpreter by clicking on an icon, or by typing

on a command line. When it starts, you should see output like this:

The first three lines contain information about the interpreter and the operating system it’s
running on, so it might be different for you. But you should check that the version number,
which is in this example, begins with 3, which indicates that you are running Python
3. If it begins with 2, you are running (you guessed it) Python 2.

The last line is a prompt that indicates that the interpreter is ready for you to enter code. If
you type a line of code and hit Enter, the interpreter displays the result:

Now you’re ready to get started. From here on, I assume that you know how to start the
Python interpreter and run code.

http://tinyurl.com/thinkpython2e

1.3. The first program 3

1.3 The first program

Traditionally, the first program you write in a new language is called “Hello, World!” be-
cause all it does is display the words “Hello, World!”. In Python, it looks like this:

This is an example of a print statement, although it doesn’t actually print anything on
paper. It displays a result on the screen. In this case, the result is the words

The quotation marks in the program mark the beginning and end of the text to be dis-
played; they don’t appear in the result.

The parentheses indicate that is a function. We’ll get to functions in Chapter 3.

In Python 2, the print statement is slightly different; it is not a function, so it doesn’t use
parentheses.

This distinction will make more sense soon, but that’s enough to get started.

1.4 Arithmetic operators

After “Hello, World”, the next step is arithmetic. Python provides operators, which are
special symbols that represent computations like addition and multiplication.

The operators , , and perform addition, subtraction, and multiplication, as in the fol-
lowing examples:

The operator performs division:

You might wonder why the result is instead of . I’ll explain in the next section.

Finally, the operator performs exponentiation; that is, it raises a number to a power:

In some other languages, is used for exponentiation, but in Python it is a bitwise operator
called XOR. If you are not familiar with bitwise operators, the result will surprise you:

I won’t cover bitwise operators in this book, but you can read about them at
.

http://wiki.python.org/moin/BitwiseOperators
http://wiki.python.org/moin/BitwiseOperators

4 Chapter 1. The way of the program

1.5 Values and types

A value is one of the basic things a program works with, like a letter or a number. Some
values we have seen so far are , , and .

These values belong to different types: is an integer, is a floating-point number, and
is a string, so-called because the letters it contains are strung together.

If you are not sure what type a value has, the interpreter can tell you:

In these results, the word “class” is used in the sense of a category; a type is a category of
values.

Not surprisingly, integers belong to the type , strings belong to and floating-point
numbers belong to .

What about values like and ? They look like numbers, but they are in quotation
marks like strings.

They’re strings.

When you type a large integer, you might be tempted to use commas between groups of
digits, as in . This is not a legal integer in Python, but it is legal:

That’s not what we expected at all! Python interprets as a comma-separated
sequence of integers. We’ll learn more about this kind of sequence later.

1.6 Formal and natural languages

Natural languages are the languages people speak, such as English, Spanish, and French.
They were not designed by people (although people try to impose some order on them);
they evolved naturally.

Formal languages are languages that are designed by people for specific applications. For
example, the notation that mathematicians use is a formal language that is particularly
good at denoting relationships among numbers and symbols. Chemists use a formal lan-
guage to represent the chemical structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to
express computations.

1.6. Formal and natural languages 5

Formal languages tend to have strict syntax rules that govern the structure of statements.
For example, in mathematics the statement 3 + 3 = 6 has correct syntax, but 3+ = 3$6
does not. In chemistry H2O is a syntactically correct formula, but 2Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic
elements of the language, such as words, numbers, and chemical elements. One of the
problems with 3+ = 3$6 is that $ is not a legal token in mathematics (at least as far as I
know). Similarly, 2Zz is not legal because there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the way tokens are combined. The equation
3+ = 3 is illegal because even though + and = are legal tokens, you can’t have one right
after the other. Similarly, in a chemical formula the subscript comes after the element name,
not before.

This is @ well-structured Engli$h sentence with invalid t*kens in it. This sentence all valid
tokens has, but invalid structure with.

When you read a sentence in English or a statement in a formal language, you have to
figure out the structure (although in a natural language you do this subconsciously). This
process is called parsing.

Although formal and natural languages have many features in common—tokens, struc-
ture, and syntax—there are some differences:

ambiguity: Natural languages are full of ambiguity, which people deal with by using con-
textual clues and other information. Formal languages are designed to be nearly or
completely unambiguous, which means that any statement has exactly one meaning,
regardless of context.

redundancy: In order to make up for ambiguity and reduce misunderstandings, natural
languages employ lots of redundancy. As a result, they are often verbose. Formal
languages are less redundant and more concise.

literalness: Natural languages are full of idiom and metaphor. If I say, “The penny
dropped”, there is probably no penny and nothing dropping (this idiom means that
someone understood something after a period of confusion). Formal languages mean
exactly what they say.

Because we all grow up speaking natural languages, it is sometimes hard to adjust to for-
mal languages. The difference between formal and natural language is like the difference
between poetry and prose, but more so:

Poetry: Words are used for their sounds as well as for their meaning, and the whole poem
together creates an effect or emotional response. Ambiguity is not only common but
often deliberate.

Prose: The literal meaning of words is more important, and the structure contributes more
meaning. Prose is more amenable to analysis than poetry but still often ambiguous.

Programs: The meaning of a computer program is unambiguous and literal, and can be
understood entirely by analysis of the tokens and structure.

6 Chapter 1. The way of the program

Formal languages are more dense than natural languages, so it takes longer to read them.
Also, the structure is important, so it is not always best to read from top to bottom, left to
right. Instead, learn to parse the program in your head, identifying the tokens and inter-
preting the structure. Finally, the details matter. Small errors in spelling and punctuation,
which you can get away with in natural languages, can make a big difference in a formal
language.

1.7 Debugging
Programmers make mistakes. For whimsical reasons, programming errors are called bugs
and the process of tracking them down is called debugging.

Programming, and especially debugging, sometimes brings out strong emotions. If you
are struggling with a difficult bug, you might feel angry, despondent, or embarrassed.

There is evidence that people naturally respond to computers as if they were people. When
they work well, we think of them as teammates, and when they are obstinate or rude, we
respond to them the same way we respond to rude, obstinate people (Reeves and Nass,
The Media Equation: How People Treat Computers, Television, and New Media Like Real People
and Places).

Preparing for these reactions might help you deal with them. One approach is to think of
the computer as an employee with certain strengths, like speed and precision, and partic-
ular weaknesses, like lack of empathy and inability to grasp the big picture.

Your job is to be a good manager: find ways to take advantage of the strengths and mitigate
the weaknesses. And find ways to use your emotions to engage with the problem, without
letting your reactions interfere with your ability to work effectively.

Learning to debug can be frustrating, but it is a valuable skill that is useful for many activ-
ities beyond programming. At the end of each chapter there is a section, like this one, with
my suggestions for debugging. I hope they help!

1.8 Glossary
problem solving: The process of formulating a problem, finding a solution, and express-

ing it.

high-level language: A programming language like Python that is designed to be easy for
humans to read and write.

low-level language: A programming language that is designed to be easy for a computer
to run; also called “machine language” or “assembly language”.

portability: A property of a program that can run on more than one kind of computer.

interpreter: A program that reads another program and executes it

prompt: Characters displayed by the interpreter to indicate that it is ready to take input
from the user.

program: A set of instructions that specifies a computation.

1.9. Exercises 7

print statement: An instruction that causes the Python interpreter to display a value on
the screen.

operator: A special symbol that represents a simple computation like addition, multipli-
cation, or string concatenation.

value: One of the basic units of data, like a number or string, that a program manipulates.

type: A category of values. The types we have seen so far are integers (type), floating-
point numbers (type), and strings (type).

integer: A type that represents whole numbers.

floating-point: A type that represents numbers with fractional parts.

string: A type that represents sequences of characters.

natural language: Any one of the languages that people speak that evolved naturally.

formal language: Any one of the languages that people have designed for specific pur-
poses, such as representing mathematical ideas or computer programs; all program-
ming languages are formal languages.

token: One of the basic elements of the syntactic structure of a program, analogous to a
word in a natural language.

syntax: The rules that govern the structure of a program.

parse: To examine a program and analyze the syntactic structure.

bug: An error in a program.

debugging: The process of finding and correcting bugs.

1.9 Exercises

Exercise 1.1. It is a good idea to read this book in front of a computer so you can try out the
examples as you go.

Whenever you are experimenting with a new feature, you should try to make mistakes. For example,
in the “Hello, world!” program, what happens if you leave out one of the quotation marks? What if
you leave out both? What if you spell wrong?

This kind of experiment helps you remember what you read; it also helps when you are programming,
because you get to know what the error messages mean. It is better to make mistakes now and on
purpose than later and accidentally.

1. In a print statement, what happens if you leave out one of the parentheses, or both?

2. If you are trying to print a string, what happens if you leave out one of the quotation marks,
or both?

3. You can use a minus sign to make a negative number like . What happens if you put a plus
sign before a number? What about ?

8 Chapter 1. The way of the program

4. In math notation, leading zeros are ok, as in . What happens if you try this in Python?

5. What happens if you have two values with no operator between them?
Exercise 1.2. Start the Python interpreter and use it as a calculator.

1. How many seconds are there in 42 minutes 42 seconds?

2. How many miles are there in 10 kilometers? Hint: there are 1.61 kilometers in a mile.

3. If you run a 10 kilometer race in 42 minutes 42 seconds, what is your average pace (time per
mile in minutes and seconds)? What is your average speed in miles per hour?

Chapter 2

Variables, expressions and
statements

One of the most powerful features of a programming language is the ability to manipulate
variables. A variable is a name that refers to a value.

2.1 Assignment statements
An assignment statement creates a new variable and gives it a value:

This example makes three assignments. The first assigns a string to a new variable named
; the second gives the integer to ; the third assigns the (approximate) value of

p to .

A common way to represent variables on paper is to write the name with an arrow pointing
to its value. This kind of figure is called a state diagram because it shows what state each
of the variables is in (think of it as the variable’s state of mind). Figure 2.1 shows the result
of the previous example.

2.2 Variable names
Programmers generally choose names for their variables that are meaningful—they docu-
ment what the variable is used for.

message

n

pi

17

’And now for something completely different’

3.1415926535897932

Figure 2.1: State diagram.

10 Chapter 2. Variables, expressions and statements

Variable names can be as long as you like. They can contain both letters and numbers, but
they can’t begin with a number. It is legal to use uppercase letters, but it is conventional to
use only lower case for variables names.

The underscore character, , can appear in a name. It is often used in names with multiple
words, such as or .

If you give a variable an illegal name, you get a syntax error:

is illegal because it begins with a number. is illegal because it contains
an illegal character, . But what’s wrong with ?

It turns out that is one of Python’s keywords. The interpreter uses keywords to
recognize the structure of the program, and they cannot be used as variable names.

Python 3 has these keywords:

You don’t have to memorize this list. In most development environments, keywords are
displayed in a different color; if you try to use one as a variable name, you’ll know.

2.3 Expressions and statements
An expression is a combination of values, variables, and operators. A value all by itself is
considered an expression, and so is a variable, so the following are all legal expressions:

When you type an expression at the prompt, the interpreter evaluates it, which means that
it finds the value of the expression. In this example, has the value 17 and has the
value 42.

A statement is a unit of code that has an effect, like creating a variable or displaying a
value.

2.4. Script mode 11

The first line is an assignment statement that gives a value to . The second line is a print
statement that displays the value of .

When you type a statement, the interpreter executes it, which means that it does whatever
the statement says. In general, statements don’t have values.

2.4 Script mode

So far we have run Python in interactive mode, which means that you interact directly
with the interpreter. Interactive mode is a good way to get started, but if you are working
with more than a few lines of code, it can be clumsy.

The alternative is to save code in a file called a script and then run the interpreter in script
mode to execute the script. By convention, Python scripts have names that end with .

If you know how to create and run a script on your computer, you are ready to go. Oth-
erwise I recommend using PythonAnywhere again. I have posted instructions for running
in script mode at .

Because Python provides both modes, you can test bits of code in interactive mode before
you put them in a script. But there are differences between interactive mode and script
mode that can be confusing.

For example, if you are using Python as a calculator, you might type

The first line assigns a value to , but it has no visible effect. The second line is an ex-
pression, so the interpreter evaluates it and displays the result. It turns out that a marathon
is about 42 kilometers.

But if you type the same code into a script and run it, you get no output at all. In script
mode an expression, all by itself, has no visible effect. Python actually evaluates the ex-
pression, but it doesn’t display the value unless you tell it to:

This behavior can be confusing at first.

A script usually contains a sequence of statements. If there is more than one statement, the
results appear one at a time as the statements execute.

For example, the script

produces the output

http://tinyurl.com/thinkpython2e

12 Chapter 2. Variables, expressions and statements

The assignment statement produces no output.

To check your understanding, type the following statements in the Python interpreter and
see what they do:

Now put the same statements in a script and run it. What is the output? Modify the script
by transforming each expression into a print statement and then run it again.

2.5 Order of operations
When an expression contains more than one operator, the order of evaluation depends
on the order of operations. For mathematical operators, Python follows mathematical
convention. The acronym PEMDAS is a useful way to remember the rules:

• Parentheses have the highest precedence and can be used to force an expression to
evaluate in the order you want. Since expressions in parentheses are evaluated first,

is 4, and is 8. You can also use parentheses to make an
expression easier to read, as in , even if it doesn’t change the
result.

• Exponentiation has the next highest precedence, so is 9, not 27, and
is 18, not 36.

• Multiplication and Division have higher precedence than Addition and Subtraction.
So is 5, not 4, and is 8, not 5.

• Operators with the same precedence are evaluated from left to right (except exponen-
tiation). So in the expression , the division happens first and the
result is multiplied by . To divide by 2p, you can use parentheses or write

.

I don’t work very hard to remember the precedence of operators. If I can’t tell by looking
at the expression, I use parentheses to make it obvious.

2.6 String operations
In general, you can’t perform mathematical operations on strings, even if the strings look
like numbers, so the following are illegal:

But there are two exceptions, and .

The operator performs string concatenation, which means it joins the strings by linking
them end-to-end. For example:

2.7. Comments 13

The operator also works on strings; it performs repetition. For example, is
. If one of the values is a string, the other has to be an integer.

This use of and makes sense by analogy with addition and multiplication. Just as
is equivalent to , we expect to be the same as , and
it is. On the other hand, there is a significant way in which string concatenation and repe-
tition are different from integer addition and multiplication. Can you think of a property
that addition has that string concatenation does not?

2.7 Comments
As programs get bigger and more complicated, they get more difficult to read. Formal
languages are dense, and it is often difficult to look at a piece of code and figure out what
it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural lan-
guage what the program is doing. These notes are called comments, and they start with
the symbol:

In this case, the comment appears on a line by itself. You can also put comments at the end
of a line:

Everything from the to the end of the line is ignored—it has no effect on the execution of
the program.

Comments are most useful when they document non-obvious features of the code. It is
reasonable to assume that the reader can figure out what the code does; it is more useful to
explain why.

This comment is redundant with the code and useless:

This comment contains useful information that is not in the code:

Good variable names can reduce the need for comments, but long names can make com-
plex expressions hard to read, so there is a tradeoff.

2.8 Debugging
Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic
errors. It is useful to distinguish between them in order to track them down more quickly.

Syntax error: “Syntax” refers to the structure of a program and the rules about that struc-
ture. For example, parentheses have to come in matching pairs, so is legal,
but is a syntax error.
If there is a syntax error anywhere in your program, Python displays an error mes-
sage and quits, and you will not be able to run the program. During the first few

14 Chapter 2. Variables, expressions and statements

weeks of your programming career, you might spend a lot of time tracking down
syntax errors. As you gain experience, you will make fewer errors and find them
faster.

Runtime error: The second type of error is a runtime error, so called because the error does
not appear until after the program has started running. These errors are also called
exceptions because they usually indicate that something exceptional (and bad) has
happened.

Runtime errors are rare in the simple programs you will see in the first few chapters,
so it might be a while before you encounter one.

Semantic error: The third type of error is “semantic”, which means related to meaning.
If there is a semantic error in your program, it will run without generating error
messages, but it will not do the right thing. It will do something else. Specifically, it
will do what you told it to do.

Identifying semantic errors can be tricky because it requires you to work backward
by looking at the output of the program and trying to figure out what it is doing.

2.9 Glossary
variable: A name that refers to a value.

assignment: A statement that assigns a value to a variable.

state diagram: A graphical representation of a set of variables and the values they refer to.

keyword: A reserved word that is used to parse a program; you cannot use keywords like
, , and as variable names.

operand: One of the values on which an operator operates.

expression: A combination of variables, operators, and values that represents a single re-
sult.

evaluate: To simplify an expression by performing the operations in order to yield a single
value.

statement: A section of code that represents a command or action. So far, the statements
we have seen are assignments and print statements.

execute: To run a statement and do what it says.

interactive mode: A way of using the Python interpreter by typing code at the prompt.

script mode: A way of using the Python interpreter to read code from a script and run it.

script: A program stored in a file.

order of operations: Rules governing the order in which expressions involving multiple
operators and operands are evaluated.

concatenate: To join two operands end-to-end.

2.10. Exercises 15

comment: Information in a program that is meant for other programmers (or anyone read-
ing the source code) and has no effect on the execution of the program.

syntax error: An error in a program that makes it impossible to parse (and therefore im-
possible to interpret).

exception: An error that is detected while the program is running.

semantics: The meaning of a program.

semantic error: An error in a program that makes it do something other than what the
programmer intended.

2.10 Exercises

Exercise 2.1. Repeating my advice from the previous chapter, whenever you learn a new feature,
you should try it out in interactive mode and make errors on purpose to see what goes wrong.

• We’ve seen that is legal. What about ?

• How about ?

• In some languages every statement ends with a semi-colon, . What happens if you put a
semi-colon at the end of a Python statement?

• What if you put a period at the end of a statement?

• In math notation you can multiply x and y like this: xy. What happens if you try that in
Python?

Exercise 2.2. Practice using the Python interpreter as a calculator:

1. The volume of a sphere with radius r is 4
3 pr3. What is the volume of a sphere with radius 5?

2. Suppose the cover price of a book is $24.95, but bookstores get a 40% discount. Shipping costs
$3 for the first copy and 75 cents for each additional copy. What is the total wholesale cost for
60 copies?

3. If I leave my house at 6:52 am and run 1 mile at an easy pace (8:15 per mile), then 3 miles at
tempo (7:12 per mile) and 1 mile at easy pace again, what time do I get home for breakfast?

16 Chapter 2. Variables, expressions and statements

Chapter 3

Functions

In the context of programming, a function is a named sequence of statements that performs
a computation. When you define a function, you specify the name and the sequence of
statements. Later, you can “call” the function by name.

3.1 Function calls
We have already seen one example of a function call:

The name of the function is . The expression in parentheses is called the argument of
the function. The result, for this function, is the type of the argument.

It is common to say that a function “takes” an argument and “returns” a result. The result
is also called the return value.

Python provides functions that convert values from one type to another. The function
takes any value and converts it to an integer, if it can, or complains otherwise:

can convert floating-point values to integers, but it doesn’t round off; it chops off the
fraction part:

converts integers and strings to floating-point numbers:

18 Chapter 3. Functions

Finally, converts its argument to a string:

3.2 Math functions

Python has a math module that provides most of the familiar mathematical functions. A
module is a file that contains a collection of related functions.

Before we can use the functions in a module, we have to import it with an import state-
ment:

This statement creates a module object named math. If you display the module object, you
get some information about it:

The module object contains the functions and variables defined in the module. To access
one of the functions, you have to specify the name of the module and the name of the
function, separated by a dot (also known as a period). This format is called dot notation.

The first example uses to compute a signal-to-noise ratio in decibels (assuming
that and are defined). The math module also provides ,
which computes logarithms base .

The second example finds the sine of . The name of the variable is a hint that
and the other trigonometric functions (, , etc.) take arguments in radians. To convert
from degrees to radians, divide by 180 and multiply by p:

The expression gets the variable from the math module. Its value is a floating-
point approximation of p, accurate to about 15 digits.

If you know trigonometry, you can check the previous result by comparing it to the square
root of two divided by two:

3.3. Composition 19

3.3 Composition
So far, we have looked at the elements of a program—variables, expressions, and
statements—in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small
building blocks and compose them. For example, the argument of a function can be any
kind of expression, including arithmetic operators:

And even function calls:

Almost anywhere you can put a value, you can put an arbitrary expression, with one ex-
ception: the left side of an assignment statement has to be a variable name. Any other
expression on the left side is a syntax error (we will see exceptions to this rule later).

3.4 Adding new functions
So far, we have only been using the functions that come with Python, but it is also possible
to add new functions. A function definition specifies the name of a new function and the
sequence of statements that run when the function is called.

Here is an example:

is a keyword that indicates that this is a function definition. The name of the function
is . The rules for function names are the same as for variable names: letters,
numbers and underscore are legal, but the first character can’t be a number. You can’t use a
keyword as the name of a function, and you should avoid having a variable and a function
with the same name.

The empty parentheses after the name indicate that this function doesn’t take any argu-
ments.

The first line of the function definition is called the header; the rest is called the body. The
header has to end with a colon and the body has to be indented. By convention, indentation
is always four spaces. The body can contain any number of statements.

The strings in the print statements are enclosed in double quotes. Single quotes and double
quotes do the same thing; most people use single quotes except in cases like this where a
single quote (which is also an apostrophe) appears in the string.

All quotation marks (single and double) must be “straight quotes”, usually located next
to Enter on the keyboard. “Curly quotes”, like the ones in this sentence, are not legal in
Python.

If you type a function definition in interactive mode, the interpreter prints dots () to let
you know that the definition isn’t complete:

20 Chapter 3. Functions

To end the function, you have to enter an empty line.

Defining a function creates a function object, which has type :

The syntax for calling the new function is the same as for built-in functions:

Once you have defined a function, you can use it inside another function. For example, to
repeat the previous refrain, we could write a function called :

And then call :

But that’s not really how the song goes.

3.5 Definitions and uses

Pulling together the code fragments from the previous section, the whole program looks
like this:

This program contains two function definitions: and . Func-
tion definitions get executed just like other statements, but the effect is to create function
objects. The statements inside the function do not run until the function is called, and the
function definition generates no output.

You may use pyCharm for the rest of this chapter.

3.6. Flow of execution 21

As you might expect, you have to create a function before you can run it. In other words,
the function definition has to run before the function gets called.

As an exercise, move the last line of this program to the top, so the function call appears
before the definitions. Run the program and see what error message you get.

Now move the function call back to the bottom and move the definition of
after the definition of . What happens when you run this program?

3.6 Flow of execution
To ensure that a function is defined before its first use, you have to know the order state-
ments run in, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are run one at a
time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that
statements inside the function don’t run until the function is called.

A function call is like a detour in the flow of execution. Instead of going to the next state-
ment, the flow jumps to the body of the function, runs the statements there, and then comes
back to pick up where it left off.

That sounds simple enough, until you remember that one function can call another. While
in the middle of one function, the program might have to run the statements in another
function. Then, while running that new function, the program might have to run yet an-
other function!

Fortunately, Python is good at keeping track of where it is, so each time a function com-
pletes, the program picks up where it left off in the function that called it. When it gets to
the end of the program, it terminates.

In summary, when you read a program, you don’t always want to read from top to bottom.
Sometimes it makes more sense if you follow the flow of execution.

3.7 Parameters and arguments
Some of the functions we have seen require arguments. For example, when you call

you pass a number as an argument. Some functions take more than one ar-
gument: takes two, the base and the exponent.

Inside the function, the arguments are assigned to variables called parameters. Here is a
definition for a function that takes an argument:

This function assigns the argument to a parameter named . When the function is
called, it prints the value of the parameter (whatever it is) twice.

This function works with any value that can be printed.

Definitely use pyCharm for this section.

22 Chapter 3. Functions

The same rules of composition that apply to built-in functions also apply to programmer-
defined functions, so we can use any kind of expression as an argument for :

The argument is evaluated before the function is called, so in the examples the expressions
and are only evaluated once.

You can also use a variable as an argument:

The name of the variable we pass as an argument () has nothing to do with the
name of the parameter (). It doesn’t matter what the value was called back home (in
the caller); here in , we call everybody .

3.8 Variables and parameters are local

When you create a variable inside a function, it is local, which means that it only exists
inside the function. For example:

This function takes two arguments, concatenates them, and prints the result twice. Here is
an example that uses it:

When terminates, the variable is destroyed. If we try to print it, we get an
exception:

3.9. Stack diagrams 23

line1

line2 ’tiddle bang.’

part1

part2

cat

bruce

’Bing tiddle ’

’Bing tiddle ’

’tiddle bang.’

’Bing tiddle tiddle bang.’

’Bing tiddle tiddle bang.’

cat_twice

print_twice

__main__

Figure 3.1: Stack diagram.

Parameters are also local. For example, outside , there is no such thing as
.

3.9 Stack diagrams

To keep track of which variables can be used where, it is sometimes useful to draw a stack
diagram. Like state diagrams, stack diagrams show the value of each variable, but they
also show the function each variable belongs to.

Each function is represented by a frame. A frame is a box with the name of a function
beside it and the parameters and variables of the function inside it. The stack diagram for
the previous example is shown in Figure 3.1.

The frames are arranged in a stack that indicates which function called which, and so
on. In this example, was called by , and was called
by , which is a special name for the topmost frame. When you create a variable
outside of any function, it belongs to .

Each parameter refers to the same value as its corresponding argument. So, has the
same value as , has the same value as , and has the same value as

.

If an error occurs during a function call, Python prints the name of the function, the name
of the function that called it, and the name of the function that called that, all the way back
to .

For example, if you try to access from within , you get a :

See next two pages for the stack representation used by PythonTutor.

This section continues on page 24.

23.1 Chapter 3. Functions

Copy your code into PythonTutor (www.pythontutor.com) to visualize your running program, as
you step through it one line at a time. Figure 3.2 shows my program listing. When you copy your
code, omit the comment lines at the top (Figure 3.3).
Be sure to select Python 3.6 from the dropdown
menu in PythonTutor. Click the Visualize
Execution button to see your code in action.

The next screen in PythonTutor shows your code on the left and an area on the right for
examining your code and its output. Buttons are provided on the left for stepping through code.  

RW3.py

Author: Bill Montana
Course: Coding for OOP
Section: A3
Date: 29 Jun 2017
IDE: PyCharm Community Edition

Assignment Info
Exercise: Reading Work
Source: Think Python 2
Chapter: 3

def print_twice(bruce):
 print(bruce)
 print(bruce)

def cat_twice(part1, part2):
 cat = part1 + part2
 print_twice(cat)

line1 = 'Bing tiddle '
line2 = 'tiddle bang.'
cat_twice(line1, line2)

Figure 3.2: Code from 3.7 & 3.8 Figure 3.3: PythonTutor code window

Figure 3.4: PythonTutor visualization window

3.9 Stack diagrams 23.2
As the Forward > button is clicked, PythonTutor steps through your code. The green and red
arrows in the code window point to the line just executed and the next to execute, respectively.
The right side shows a stack diagram for your executing code. Figure 3.5 shows what it looks like
just before the end of execution for the code from this chapter.  

Figure 3.5: Output from PythonTutor

24 Chapter 3. Functions

This list of functions is called a traceback. It tells you what program file the error occurred
in, and what line, and what functions were executing at the time. It also shows the line of
code that caused the error.

The order of the functions in the traceback is the same as the order of the frames in the
stack diagram. The function that is currently running is at the bottom.

3.10 Fruitful functions and void functions

Some of the functions we have used, such as the math functions, return results; for lack of
a better name, I call them fruitful functions. Other functions, like , perform
an action but don’t return a value. They are called void functions.

When you call a fruitful function, you almost always want to do something with the result;
for example, you might assign it to a variable or use it as part of an expression:

When you call a function in interactive mode, Python displays the result:

But in a script, if you call a fruitful function all by itself, the return value is lost forever!

This script computes the square root of 5, but since it doesn’t store or display the result, it
is not very useful.

Void functions might display something on the screen or have some other effect, but they
don’t have a return value. If you assign the result to a variable, you get a special value
called .

The value is not the same as the string . It is a special value that has its own
type:

The functions we have written so far are all void. We will start writing fruitful functions in
a few chapters.

3.11 Why functions?

It may not be clear why it is worth the trouble to divide a program into functions. There
are several reasons:

3.12. Debugging 25

• Creating a new function gives you an opportunity to name a group of statements,
which makes your program easier to read and debug.

• Functions can make a program smaller by eliminating repetitive code. Later, if you
make a change, you only have to make it in one place.

• Dividing a long program into functions allows you to debug the parts one at a time
and then assemble them into a working whole.

• Well-designed functions are often useful for many programs. Once you write and
debug one, you can reuse it.

3.12 Debugging

One of the most important skills you will acquire is debugging. Although it can be frus-
trating, debugging is one of the most intellectually rich, challenging, and interesting parts
of programming.

In some ways debugging is like detective work. You are confronted with clues and you
have to infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea about what is going
wrong, you modify your program and try again. If your hypothesis was correct, you can
predict the result of the modification, and you take a step closer to a working program. If
your hypothesis was wrong, you have to come up with a new one. As Sherlock Holmes
pointed out, “When you have eliminated the impossible, whatever remains, however im-
probable, must be the truth.” (A. Conan Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, programming
is the process of gradually debugging a program until it does what you want. The idea is
that you should start with a working program and make small modifications, debugging
them as you go.

For example, Linux is an operating system that contains millions of lines of code, but it
started out as a simple program Linus Torvalds used to explore the Intel 80386 chip. Ac-
cording to Larry Greenfield, “One of Linus’s earlier projects was a program that would
switch between printing AAAA and BBBB. This later evolved to Linux.” (The Linux Users’
Guide Beta Version 1).

3.13 Glossary
function: A named sequence of statements that performs some useful operation. Func-

tions may or may not take arguments and may or may not produce a result.

function definition: A statement that creates a new function, specifying its name, param-
eters, and the statements it contains.

function object: A value created by a function definition. The name of the function is a
variable that refers to a function object.

header: The first line of a function definition.

26 Chapter 3. Functions

body: The sequence of statements inside a function definition.

parameter: A name used inside a function to refer to the value passed as an argument.

function call: A statement that runs a function. It consists of the function name followed
by an argument list in parentheses.

argument: A value provided to a function when the function is called. This value is as-
signed to the corresponding parameter in the function.

local variable: A variable defined inside a function. A local variable can only be used
inside its function.

return value: The result of a function. If a function call is used as an expression, the return
value is the value of the expression.

fruitful function: A function that returns a value.

void function: A function that always returns .

: A special value returned by void functions.

module: A file that contains a collection of related functions and other definitions.

import statement: A statement that reads a module file and creates a module object.

module object: A value created by an statement that provides access to the values
defined in a module.

dot notation: The syntax for calling a function in another module by specifying the mod-
ule name followed by a dot (period) and the function name.

composition: Using an expression as part of a larger expression, or a statement as part of
a larger statement.

flow of execution: The order statements run in.

stack diagram: A graphical representation of a stack of functions, their variables, and the
values they refer to.

frame: A box in a stack diagram that represents a function call. It contains the local vari-
ables and parameters of the function.

traceback: A list of the functions that are executing, printed when an exception occurs.

3.14 Exercises

Exercise 3.1. Write a function named that takes a string named as a parameter
and prints the string with enough leading spaces so that the last letter of the string is in column 70
of the display.

Hint: Use string concatenation and repetition. Also, Python provides a built-in function called
that returns the length of a string, so the value of is 5.

Ex 3.1 Also print a scale from 1 to 80 above ‘monty’
as a check and to show you did it properly.

 print(' 1 2 3 4 5 6 7 8')
 print('12345678901234567890123456789012345678901234567890123456789012345678901234567890')

3.14. Exercises 27

Exercise 3.2. A function object is a value you can assign to a variable or pass as an argument. For
example, is a function that takes a function object as an argument and calls it twice:

Here’s an example that uses to call a function named twice.

1. Type this example into a script and test it.

2. Modify so that it takes two arguments, a function object and a value, and calls the
function twice, passing the value as an argument.

3. Copy the definition of from earlier in this chapter to your script.

4. Use the modified version of to call twice, passing as an
argument.

5. Define a new function called that takes a function object and a value and calls the
function four times, passing the value as a parameter. There should be only two statements in
the body of this function, not four.

Solution: .
Exercise 3.3. Note: This exercise should be done using only the statements and other features we
have learned so far.

1. Write a function that draws a grid like the following:

Hint: to print more than one value on a line, you can print a comma-separated sequence of
values:

By default, advances to the next line, but you can override that behavior and put a
space at the end, like this:

http://thinkpython2.com/code/do_four.py
Note: This solution is not correct. TODO

28 Chapter 3. Functions

The output of these statements is .
A statement with no argument ends the current line and goes to the next line.

2. Write a function that draws a similar grid with four rows and four columns.

Solution: . Credit: This exercise is based on an
exercise in Oualline, Practical C Programming, Third Edition, O’Reilly Media, 1997.

http://thinkpython2.com/code/grid.py

Chapter 4

Case study: interface design

This chapter presents a case study that demonstrates a process for designing functions that
work together.

It introduces the module, which allows you to create images using turtle graphics.
The module is included in most Python installations, but if you are running Python
using PythonAnywhere, you won’t be able to run the turtle examples (at least you couldn’t
when I wrote this).

If you have already installed Python on your computer, you should be able to run the
examples. Otherwise, now is a good time to install. I have posted instructions at

.

Code examples from this chapter are available from
.

4.1 The turtle module

To check whether you have the module, open the Python interpreter and type

When you run this code, it should create a new window with small arrow that represents
the turtle. Close the window.

Create a file named and type in the following code:

The module (with a lowercase ’t’) provides a function called (with an up-
percase ’T’) that creates a Turtle object, which we assign to a variable named . Printing

displays something like:

http://tinyurl.com/thinkpython2e
http://tinyurl.com/thinkpython2e
http://thinkpython2.com/code/polygon.py
http://thinkpython2.com/code/polygon.py

30 Chapter 4. Case study: interface design

This means that refers to an object with type as defined in module .

tells the window to wait for the user to do something, although in this case
there’s not much for the user to do except close the window.

Once you create a Turtle, you can call a method to move it around the window. A method
is similar to a function, but it uses slightly different syntax. For example, to move the turtle
forward:

The method, , is associated with the turtle object we’re calling . Calling a method is
like making a request: you are asking to move forward.

The argument of is a distance in pixels, so the actual size depends on your display.

Other methods you can call on a Turtle are to move backward, for left turn, and
right turn. The argument for and is an angle in degrees.

Also, each Turtle is holding a pen, which is either down or up; if the pen is down, the Turtle
leaves a trail when it moves. The methods and stand for “pen up” and “pen down”.

To draw a right angle, add these lines to the program (after creating and before calling
):

When you run this program, you should see move east and then north, leaving two
line segments behind.

Now modify the program to draw a square. Don’t go on until you’ve got it working!

4.2 Simple repetition

Chances are you wrote something like this:

We can do the same thing more concisely with a statement. Add this example to
and run it again:

You should see something like this:

4.3. Exercises 31

This is the simplest use of the statement; we will see more later. But that should be
enough to let you rewrite your square-drawing program. Don’t go on until you do.

Here is a statement that draws a square:

The syntax of a statement is similar to a function definition. It has a header that ends
with a colon and an indented body. The body can contain any number of statements.

A statement is also called a loop because the flow of execution runs through the body
and then loops back to the top. In this case, it runs the body four times.

This version is actually a little different from the previous square-drawing code because it
makes another turn after drawing the last side of the square. The extra turn takes more
time, but it simplifies the code if we do the same thing every time through the loop. This
version also has the effect of leaving the turtle back in the starting position, facing in the
starting direction.

4.3 Exercises
The following is a series of exercises using TurtleWorld. They are meant to be fun, but they
have a point, too. While you are working on them, think about what the point is.

The following sections have solutions to the exercises, so don’t look until you have finished
(or at least tried).

1. Write a function called that takes a parameter named , which is a turtle. It
should use the turtle to draw a square.
Write a function call that passes as an argument to , and then run the
program again.

2. Add another parameter, named , to . Modify the body so length of the
sides is , and then modify the function call to provide a second argument. Run
the program again. Test your program with a range of values for .

3. Make a copy of and change the name to . Add another parameter
named and modify the body so it draws an n-sided regular polygon. Hint: The
exterior angles of an n-sided regular polygon are 360/n degrees.

4. Write a function called that takes a turtle, , and radius, , as parameters and
that draws an approximate circle by calling with an appropriate length and
number of sides. Test your function with a range of values of .
Hint: figure out the circumference of the circle and make sure that

.

5. Make a more general version of called that takes an additional parameter
, which determines what fraction of a circle to draw. is in units of degrees,

so when , should draw a complete circle.

32 Chapter 4. Case study: interface design

4.4 Encapsulation

The first exercise asks you to put your square-drawing code into a function definition and
then call the function, passing the turtle as a parameter. Here is a solution:

The innermost statements, and are indented twice to show that they are inside the
loop, which is inside the function definition. The next line, , is flush with

the left margin, which indicates the end of both the loop and the function definition.

Inside the function, refers to the same turtle , so has the same effect as
. In that case, why not call the parameter ? The idea is that can be any

turtle, not just , so you could create a second turtle and pass it as an argument to :

Wrapping a piece of code up in a function is called encapsulation. One of the benefits of
encapsulation is that it attaches a name to the code, which serves as a kind of documenta-
tion. Another advantage is that if you re-use the code, it is more concise to call a function
twice than to copy and paste the body!

4.5 Generalization

The next step is to add a parameter to . Here is a solution:

Adding a parameter to a function is called generalization because it makes the function
more general: in the previous version, the square is always the same size; in this version it
can be any size.

The next step is also a generalization. Instead of drawing squares, draws regular
polygons with any number of sides. Here is a solution:

4.6. Interface design 33

This example draws a 7-sided polygon with side length 70.

If you are using Python 2, the value of might be off because of integer division. A
simple solution is to compute . Because the numerator is a floating-
point number, the result is floating point.

When a function has more than a few numeric arguments, it is easy to forget what they are,
or what order they should be in. In that case it is often a good idea to include the names of
the parameters in the argument list:

These are called keyword arguments because they include the parameter names as “key-
words” (not to be confused with Python keywords like and).

This syntax makes the program more readable. It is also a reminder about how arguments
and parameters work: when you call a function, the arguments are assigned to the param-
eters.

4.6 Interface design
The next step is to write , which takes a radius, , as a parameter. Here is a simple
solution that uses to draw a 50-sided polygon:

The first line computes the circumference of a circle with radius using the formula 2pr.
Since we use , we have to import . By convention, statements are
usually at the beginning of the script.

is the number of line segments in our approximation of a circle, so is the length
of each segment. Thus, draws a 50-sided polygon that approximates a circle with
radius .

One limitation of this solution is that is a constant, which means that for very big circles,
the line segments are too long, and for small circles, we waste time drawing very small
segments. One solution would be to generalize the function by taking as a parameter.
This would give the user (whoever calls) more control, but the interface would be
less clean.

The interface of a function is a summary of how it is used: what are the parameters? What
does the function do? And what is the return value? An interface is “clean” if it allows the
caller to do what they want without dealing with unnecessary details.

In this example, belongs in the interface because it specifies the circle to be drawn. is
less appropriate because it pertains to the details of how the circle should be rendered.

Rather than clutter up the interface, it is better to choose an appropriate value of depend-
ing on :

34 Chapter 4. Case study: interface design

Now the number of segments is an integer near , so the length of each
segment is approximately 3, which is small enough that the circles look good, but big
enough to be efficient, and acceptable for any size circle.

Adding 3 to guarantees that the polygon has at least 3 sides.

4.7 Refactoring
When I wrote , I was able to re-use because a many-sided polygon is a good
approximation of a circle. But is not as cooperative; we can’t use or to
draw an arc.

One alternative is to start with a copy of and transform it into . The result
might look like this:

The second half of this function looks like , but we can’t re-use without
changing the interface. We could generalize to take an angle as a third argument,
but then would no longer be an appropriate name! Instead, let’s call the more
general function :

Now we can rewrite and to use :

Finally, we can rewrite to use :

4.8. A development plan 35

This process—rearranging a program to improve interfaces and facilitate code re-use—is
called refactoring. In this case, we noticed that there was similar code in and ,
so we “factored it out” into .

If we had planned ahead, we might have written first and avoided refactoring,
but often you don’t know enough at the beginning of a project to design all the interfaces.
Once you start coding, you understand the problem better. Sometimes refactoring is a sign
that you have learned something.

4.8 A development plan

A development plan is a process for writing programs. The process we used in this case
study is “encapsulation and generalization”. The steps of this process are:

1. Start by writing a small program with no function definitions.

2. Once you get the program working, identify a coherent piece of it, encapsulate the
piece in a function and give it a name.

3. Generalize the function by adding appropriate parameters.

4. Repeat steps 1–3 until you have a set of working functions. Copy and paste working
code to avoid retyping (and re-debugging).

5. Look for opportunities to improve the program by refactoring. For example, if you
have similar code in several places, consider factoring it into an appropriately general
function.

This process has some drawbacks—we will see alternatives later—but it can be useful if
you don’t know ahead of time how to divide the program into functions. This approach
lets you design as you go along.

4.9 docstring

A docstring is a string at the beginning of a function that explains the interface (“doc” is
short for “documentation”). Here is an example:

By convention, all docstrings are triple-quoted strings, also known as multiline strings
because the triple quotes allow the string to span more than one line.

36 Chapter 4. Case study: interface design

It is terse, but it contains the essential information someone would need to use this func-
tion. It explains concisely what the function does (without getting into the details of how
it does it). It explains what effect each parameter has on the behavior of the function and
what type each parameter should be (if it is not obvious).

Writing this kind of documentation is an important part of interface design. A well-
designed interface should be simple to explain; if you have a hard time explaining one
of your functions, maybe the interface could be improved.

4.10 Debugging

An interface is like a contract between a function and a caller. The caller agrees to provide
certain parameters and the function agrees to do certain work.

For example, requires four arguments: has to be a Turtle; has to be an integer;
should be a positive number; and has to be a number, which is understood

to be in degrees.

These requirements are called preconditions because they are supposed to be true before
the function starts executing. Conversely, conditions at the end of the function are post-
conditions. Postconditions include the intended effect of the function (like drawing line
segments) and any side effects (like moving the Turtle or making other changes).

Preconditions are the responsibility of the caller. If the caller violates a (properly docu-
mented!) precondition and the function doesn’t work correctly, the bug is in the caller, not
the function.

If the preconditions are satisfied and the postconditions are not, the bug is in the function.
If your pre- and postconditions are clear, they can help with debugging.

4.11 Glossary
method: A function that is associated with an object and called using dot notation.

loop: A part of a program that can run repeatedly.

encapsulation: The process of transforming a sequence of statements into a function defi-
nition.

generalization: The process of replacing something unnecessarily specific (like a number)
with something appropriately general (like a variable or parameter).

keyword argument: An argument that includes the name of the parameter as a “key-
word”.

interface: A description of how to use a function, including the name and descriptions of
the arguments and return value.

refactoring: The process of modifying a working program to improve function interfaces
and other qualities of the code.

development plan: A process for writing programs.

4.12. Exercises 37

Figure 4.1: Turtle flowers.

Figure 4.2: Turtle pies.

docstring: A string that appears at the top of a function definition to document the func-
tion’s interface.

precondition: A requirement that should be satisfied by the caller before a function starts.

postcondition: A requirement that should be satisfied by the function before it ends.

4.12 Exercises
Exercise 4.1. Download the code in this chapter from

.

1. Draw a stack diagram that shows the state of the program while executing
. You can do the arithmetic by hand or add statements to the code.

2. The version of in Section 4.7 is not very accurate because the linear approximation of the
circle is always outside the true circle. As a result, the Turtle ends up a few pixels away from
the correct destination. My solution shows a way to reduce the effect of this error. Read the
code and see if it makes sense to you. If you draw a diagram, you might see how it works.

Exercise 4.2. Write an appropriately general set of functions that can draw flowers as in Figure 4.1.

Solution: , also requires
.

Exercise 4.3. Write an appropriately general set of functions that can draw shapes as in Figure 4.2.

Solution: .
Exercise 4.4. The letters of the alphabet can be constructed from a moderate number of basic ele-
ments, like vertical and horizontal lines and a few curves. Design an alphabet that can be drawn
with a minimal number of basic elements and then write functions that draw the letters.

You should write one function for each letter, with names , , etc., and put your
functions in a file named . You can download a “turtle typewriter” from

to help you test your code.

http://thinkpython2.com/code/polygon.py
PythonTutor does not support turtle. Do this by hand.

http://thinkpython2.com/code/polygon.py
http://thinkpython2.com/code/flower.py
http://thinkpython2.com/code/polygon.py
http://thinkpython2.com/code/polygon.py
http://thinkpython2.com/code/pie.py
http://thinkpython2.com/code/typewriter.py
http://thinkpython2.com/code/typewriter.py

38 Chapter 4. Case study: interface design

You can get a solution from ; it also requires
.

Exercise 4.5. Read about spirals at ; then write
a program that draws an Archimedian spiral (or one of the other kinds). Solution:

.

http://thinkpython2.com/code/letters.py
http://thinkpython2.com/code/polygon.py
http://en.wikipedia.org/wiki/Spiral
http://thinkpython2.com/code/spiral.py
http://thinkpython2.com/code/spiral.py

Chapter 5

Conditionals and recursion

The main topic of this chapter is the statement, which executes different code depending
on the state of the program. But first I want to introduce two new operators: floor division
and modulus.

5.1 Floor division and modulus

The floor division operator, , divides two numbers and rounds down to an integer. For
example, suppose the run time of a movie is 105 minutes. You might want to know how
long that is in hours. Conventional division returns a floating-point number:

But we don’t normally write hours with decimal points. Floor division returns the integer
number of hours, dropping the fraction part:

To get the remainder, you could subtract off one hour in minutes:

An alternative is to use the modulus operator, , which divides two numbers and returns
the remainder.

The modulus operator is more useful than it seems. For example, you can check whether
one number is divisible by another—if is zero, then is divisible by .

40 Chapter 5. Conditionals and recursion

Also, you can extract the right-most digit or digits from a number. For example,
yields the right-most digit of (in base 10). Similarly yields the last two digits.

If you are using Python 2, division works differently. The division operator, , performs
floor division if both operands are integers, and floating-point division if either operand is
a .

5.2 Boolean expressions

A boolean expression is an expression that is either true or false. The following examples
use the operator , which compares two operands and produces if they are equal
and otherwise:

and are special values that belong to the type ; they are not strings:

The operator is one of the relational operators; the others are:

Although these operations are probably familiar to you, the Python symbols are different
from the mathematical symbols. A common error is to use a single equal sign () instead of
a double equal sign (). Remember that is an assignment operator and is a relational
operator. There is no such thing as or .

5.3 Logical operators

There are three logical operators: , , and . The semantics (meaning) of these
operators is similar to their meaning in English. For example, is true
only if is greater than 0 and less than 10.

is true if either or both of the conditions is true, that is, if the number
is divisible by 2 or 3.

Finally, the operator negates a boolean expression, so is true if is
false, that is, if is less than or equal to .

Strictly speaking, the operands of the logical operators should be boolean expressions, but
Python is not very strict. Any nonzero number is interpreted as :

5.4. Conditional execution 41

This flexibility can be useful, but there are some subtleties to it that might be confusing.
You might want to avoid it (unless you know what you are doing).

5.4 Conditional execution

In order to write useful programs, we almost always need the ability to check conditions
and change the behavior of the program accordingly. Conditional statements give us this
ability. The simplest form is the statement:

The boolean expression after is called the condition. If it is true, the indented statement
runs. If not, nothing happens.

statements have the same structure as function definitions: a header followed by an
indented body. Statements like this are called compound statements.

There is no limit on the number of statements that can appear in the body, but there has to
be at least one. Occasionally, it is useful to have a body with no statements (usually as a
place keeper for code you haven’t written yet). In that case, you can use the statement,
which does nothing.

5.5 Alternative execution

A second form of the statement is “alternative execution”, in which there are two possi-
bilities and the condition determines which one runs. The syntax looks like this:

If the remainder when is divided by 2 is 0, then we know that is even, and the program
displays an appropriate message. If the condition is false, the second set of statements
runs. Since the condition must be true or false, exactly one of the alternatives will run. The
alternatives are called branches, because they are branches in the flow of execution.

5.6 Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches.
One way to express a computation like that is a chained conditional:

42 Chapter 5. Conditionals and recursion

is an abbreviation of “else if”. Again, exactly one branch will run. There is no limit on
the number of statements. If there is an clause, it has to be at the end, but there
doesn’t have to be one.

Each condition is checked in order. If the first is false, the next is checked, and so on. If one
of them is true, the corresponding branch runs and the statement ends. Even if more than
one condition is true, only the first true branch runs.

5.7 Nested conditionals
One conditional can also be nested within another. We could have written the example in
the previous section like this:

The outer conditional contains two branches. The first branch contains a simple statement.
The second branch contains another statement, which has two branches of its own.
Those two branches are both simple statements, although they could have been conditional
statements as well.

Although the indentation of the statements makes the structure apparent, nested condi-
tionals become difficult to read very quickly. It is a good idea to avoid them when you
can.

Logical operators often provide a way to simplify nested conditional statements. For ex-
ample, we can rewrite the following code using a single conditional:

The statement runs only if we make it past both conditionals, so we can get the same
effect with the operator:

5.8. Recursion 43

For this kind of condition, Python provides a more concise option:

5.8 Recursion
It is legal for one function to call another; it is also legal for a function to call itself. It may
not be obvious why that is a good thing, but it turns out to be one of the most magical
things a program can do. For example, look at the following function:

If is 0 or negative, it outputs the word, “Blastoff!” Otherwise, it outputs and then calls
a function named —itself—passing as an argument.

What happens if we call this function like this?

The execution of begins with , and since is greater than 0, it outputs the
value 3, and then calls itself...

The execution of begins with , and since is greater than 0, it
outputs the value 2, and then calls itself...

The execution of begins with , and since is greater
than 0, it outputs the value 1, and then calls itself...

The execution of begins with , and since is
not greater than 0, it outputs the word, “Blastoff!” and then
returns.

The that got returns.
The that got returns.

The that got returns.

And then you’re back in . So, the total output looks like this:

A function that calls itself is recursive; the process of executing it is called recursion.

As another example, we can write a function that prints a string times.

44 Chapter 5. Conditionals and recursion

__main__

countdown

countdown

countdown

countdown

n 3

n 2

n 1

n 0

Figure 5.1: Stack diagram.

If the return statement exits the function. The flow of execution immediately re-
turns to the caller, and the remaining lines of the function don’t run.

The rest of the function is similar to : it displays and then calls itself to display
n � 1 additional times. So the number of lines of output is , which adds up

to .

For simple examples like this, it is probably easier to use a loop. But we will see
examples later that are hard to write with a loop and easy to write with recursion, so it
is good to start early.

5.9 Stack diagrams for recursive functions
In Section 3.9, we used a stack diagram to represent the state of a program during a function
call. The same kind of diagram can help interpret a recursive function.

Every time a function gets called, Python creates a frame to contain the function’s local
variables and parameters. For a recursive function, there might be more than one frame on
the stack at the same time.

Figure 5.1 shows a stack diagram for called with .

As usual, the top of the stack is the frame for . It is empty because we did not
create any variables in or pass any arguments to it.

The four frames have different values for the parameter . The bottom of the
stack, where , is called the base case. It does not make a recursive call, so there are no
more frames.

As an exercise, draw a stack diagram for called with and . Then
write a function called that takes a function object and a number, , as arguments, and
that calls the given function times.

5.10 Infinite recursion
If a recursion never reaches a base case, it goes on making recursive calls forever, and the
program never terminates. This is known as infinite recursion, and it is generally not a
good idea. Here is a minimal program with an infinite recursion:

5.11. Keyboard input 45

In most programming environments, a program with infinite recursion does not really run
forever. Python reports an error message when the maximum recursion depth is reached:

This traceback is a little bigger than the one we saw in the previous chapter. When the error
occurs, there are 1000 frames on the stack!

If you encounter an infinite recursion by accident, review your function to confirm that
there is a base case that does not make a recursive call. And if there is a base case, check
whether you are guaranteed to reach it.

5.11 Keyboard input
The programs we have written so far accept no input from the user. They just do the same
thing every time.

Python provides a built-in function called that stops the program and waits for the
user to type something. When the user presses or , the program resumes and

returns what the user typed as a string. In Python 2, the same function is called
.

Before getting input from the user, it is a good idea to print a prompt telling the user what
to type. can take a prompt as an argument:

The sequence at the end of the prompt represents a newline, which is a special character
that causes a line break. That’s why the user’s input appears below the prompt.

If you expect the user to type an integer, you can try to convert the return value to :

46 Chapter 5. Conditionals and recursion

But if the user types something other than a string of digits, you get an error:

We will see how to handle this kind of error later.

5.12 Debugging
When a syntax or runtime error occurs, the error message contains a lot of information, but
it can be overwhelming. The most useful parts are usually:

• What kind of error it was, and

• Where it occurred.

Syntax errors are usually easy to find, but there are a few gotchas. Whitespace errors can
be tricky because spaces and tabs are invisible and we are used to ignoring them.

In this example, the problem is that the second line is indented by one space. But the error
message points to , which is misleading. In general, error messages indicate where the
problem was discovered, but the actual error might be earlier in the code, sometimes on a
previous line.

The same is true of runtime errors. Suppose you are trying to compute a signal-to-noise
ratio in decibels. The formula is SNRdb = 10 log10(Psignal/Pnoise). In Python, you might
write something like this:

When you run this program, you get an exception:

The error message indicates line 5, but there is nothing wrong with that line. To find the
real error, it might be useful to print the value of , which turns out to be 0. The
problem is in line 4, which uses floor division instead of floating-point division.

You should take the time to read error messages carefully, but don’t assume that everything
they say is correct.

5.13. Glossary 47

5.13 Glossary
floor division: An operator, denoted , that divides two numbers and rounds down (to-

ward negative infinity) to an integer.

modulus operator: An operator, denoted with a percent sign (), that works on integers
and returns the remainder when one number is divided by another.

boolean expression: An expression whose value is either or .

relational operator: One of the operators that compares its operands: , , , , , and
.

logical operator: One of the operators that combines boolean expressions: , , and
.

conditional statement: A statement that controls the flow of execution depending on some
condition.

condition: The boolean expression in a conditional statement that determines which
branch runs.

compound statement: A statement that consists of a header and a body. The header ends
with a colon (:). The body is indented relative to the header.

branch: One of the alternative sequences of statements in a conditional statement.

chained conditional: A conditional statement with a series of alternative branches.

nested conditional: A conditional statement that appears in one of the branches of another
conditional statement.

return statement: A statement that causes a function to end immediately and return to the
caller.

recursion: The process of calling the function that is currently executing.

base case: A conditional branch in a recursive function that does not make a recursive call.

infinite recursion: A recursion that doesn’t have a base case, or never reaches it. Eventu-
ally, an infinite recursion causes a runtime error.

5.14 Exercises

Exercise 5.1. The module provides a function, also named , that returns the current
Greenwich Mean Time in “the epoch”, which is an arbitrary time used as a reference point. On
UNIX systems, the epoch is 1 January 1970.

Write a script that reads the current time and converts it to a time of day in hours, minutes, and
seconds, plus the number of days since the epoch.

48 Chapter 5. Conditionals and recursion

Exercise 5.2. Fermat’s Last Theorem says that there are no positive integers a, b, and c such that

an + bn = cn

for any values of n greater than 2.

1. Write a function named that takes four parameters— , , and —and
checks to see if Fermat’s theorem holds. If n is greater than 2 and

an + bn = cn

the program should print, “Holy smokes, Fermat was wrong!” Otherwise the program should
print, “No, that doesn’t work.”

2. Write a function that prompts the user to input values for , , and , converts them to
integers, and uses to check whether they violate Fermat’s theorem.

Exercise 5.3. If you are given three sticks, you may or may not be able to arrange them in a triangle.
For example, if one of the sticks is 12 inches long and the other two are one inch long, you will not
be able to get the short sticks to meet in the middle. For any three lengths, there is a simple test to
see if it is possible to form a triangle:

If any of the three lengths is greater than the sum of the other two, then you cannot
form a triangle. Otherwise, you can. (If the sum of two lengths equals the third, they
form what is called a “degenerate” triangle.)

1. Write a function named that takes three integers as arguments, and that prints
either “Yes” or “No”, depending on whether you can or cannot form a triangle from sticks
with the given lengths.

2. Write a function that prompts the user to input three stick lengths, converts them to integers,
and uses to check whether sticks with the given lengths can form a triangle.

Exercise 5.4. What is the output of the following program? Draw a stack diagram that shows the
state of the program when it prints the result.

1. What would happen if you called this function like this: ?

2. Write a docstring that explains everything someone would need to know in order to use this
function (and nothing else).

The following exercises use the module, described in Chapter 4:
Exercise 5.5. Read the following function and see if you can figure out what it does (see the exam-
ples in Chapter 4). Then run it and see if you got it right.

5.14. Exercises 49

Figure 5.2: A Koch curve.

Exercise 5.6. The Koch curve is a fractal that looks something like Figure 5.2. To draw a Koch
curve with length x, all you have to do is

1. Draw a Koch curve with length x/3.

2. Turn left 60 degrees.

3. Draw a Koch curve with length x/3.

4. Turn right 120 degrees.

5. Draw a Koch curve with length x/3.

6. Turn left 60 degrees.

7. Draw a Koch curve with length x/3.

The exception is if x is less than 3: in that case, you can just draw a straight line with length x.

1. Write a function called that takes a turtle and a length as parameters, and that uses the
turtle to draw a Koch curve with the given length.

2. Write a function called that draws three Koch curves to make the outline of a
snowflake.
Solution: .

3. The Koch curve can be generalized in several ways. See
for examples and implement your favorite.

http://thinkpython2.com/code/koch.py
http://en.wikipedia.org/wiki/Koch_snowflake
http://en.wikipedia.org/wiki/Koch_snowflake

50 Chapter 5. Conditionals and recursion

Chapter 6

Fruitful functions

Many of the Python functions we have used, such as the math functions, produce return
values. But the functions we’ve written are all void: they have an effect, like printing a
value or moving a turtle, but they don’t have a return value. In this chapter you will learn
to write fruitful functions.

6.1 Return values

Calling the function generates a return value, which we usually assign to a variable or use
as part of an expression.

The functions we have written so far are void. Speaking casually, they have no return
value; more precisely, their return value is .

In this chapter, we are (finally) going to write fruitful functions. The first example is ,
which returns the area of a circle with the given radius:

We have seen the statement before, but in a fruitful function the statement
includes an expression. This statement means: “Return immediately from this function
and use the following expression as a return value.” The expression can be arbitrarily
complicated, so we could have written this function more concisely:

On the other hand, temporary variables like can make debugging easier.

Sometimes it is useful to have multiple return statements, one in each branch of a condi-
tional:

52 Chapter 6. Fruitful functions

Since these statements are in an alternative conditional, only one runs.

As soon as a return statement runs, the function terminates without executing any subse-
quent statements. Code that appears after a statement, or any other place the flow
of execution can never reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the pro-
gram hits a statement. For example:

This function is incorrect because if happens to be 0, neither condition is true, and the
function ends without hitting a statement. If the flow of execution gets to the end
of a function, the return value is , which is not the absolute value of 0.

By the way, Python provides a built-in function called that computes absolute values.

As an exercise, write a function takes two values, and , and returns if ,
if , and if .

6.2 Incremental development
As you write larger functions, you might find yourself spending more time debugging.

To deal with increasingly complex programs, you might want to try a process called in-
cremental development. The goal of incremental development is to avoid long debugging
sessions by adding and testing only a small amount of code at a time.

As an example, suppose you want to find the distance between two points, given by the
coordinates (x1, y1) and (x2, y2). By the Pythagorean theorem, the distance is:

distance =
q
(x2 � x1)2 + (y2 � y1)2

The first step is to consider what a function should look like in Python. In other
words, what are the inputs (parameters) and what is the output (return value)?

In this case, the inputs are two points, which you can represent using four numbers. The
return value is the distance represented by a floating-point value.

Immediately you can write an outline of the function:

6.2. Incremental development 53

Obviously, this version doesn’t compute distances; it always returns zero. But it is syn-
tactically correct, and it runs, which means that you can test it before you make it more
complicated.

To test the new function, call it with sample arguments:

I chose these values so that the horizontal distance is 3 and the vertical distance is 4; that
way, the result is 5, the hypotenuse of a 3-4-5 triangle. When testing a function, it is useful
to know the right answer.

At this point we have confirmed that the function is syntactically correct, and we can start
adding code to the body. A reasonable next step is to find the differences x2 � x1 and
y2 � y1. The next version stores those values in temporary variables and prints them.

If the function is working, it should display and . If so, we know that the
function is getting the right arguments and performing the first computation correctly. If
not, there are only a few lines to check.

Next we compute the sum of squares of and :

Again, you would run the program at this stage and check the output (which should be
25). Finally, you can use to compute and return the result:

If that works correctly, you are done. Otherwise, you might want to print the value of
before the return statement.

The final version of the function doesn’t display anything when it runs; it only returns
a value. The statements we wrote are useful for debugging, but once you get the
function working, you should remove them. Code like that is called scaffolding because it
is helpful for building the program but is not part of the final product.

When you start out, you should add only a line or two of code at a time. As you gain more
experience, you might find yourself writing and debugging bigger chunks. Either way,
incremental development can save you a lot of debugging time.

The key aspects of the process are:

54 Chapter 6. Fruitful functions

1. Start with a working program and make small incremental changes. At any point, if
there is an error, you should have a good idea where it is.

2. Use variables to hold intermediate values so you can display and check them.

3. Once the program is working, you might want to remove some of the scaffolding or
consolidate multiple statements into compound expressions, but only if it does not
make the program difficult to read.

As an exercise, use incremental development to write a function called that
returns the length of the hypotenuse of a right triangle given the lengths of the other two
legs as arguments. Record each stage of the development process as you go.

6.3 Composition

As you should expect by now, you can call one function from within another. As an exam-
ple, we’ll write a function that takes two points, the center of the circle and a point on the
perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables and , and the perimeter point is
in and . The first step is to find the radius of the circle, which is the distance between
the two points. We just wrote a function, , that does that:

The next step is to find the area of a circle with that radius; we just wrote that, too:

Encapsulating these steps in a function, we get:

The temporary variables and are useful for development and debugging,
but once the program is working, we can make it more concise by composing the function
calls:

6.4 Boolean functions

Functions can return booleans, which is often convenient for hiding complicated tests in-
side functions. For example:

6.5. More recursion 55

It is common to give boolean functions names that sound like yes/no questions;
returns either or to indicate whether is divisible by .

Here is an example:

The result of the operator is a boolean, so we can write the function more concisely by
returning it directly:

Boolean functions are often used in conditional statements:

It might be tempting to write something like:

But the extra comparison is unnecessary.

As an exercise, write a function that returns if x y z or
otherwise.

6.5 More recursion
We have only covered a small subset of Python, but you might be interested to know that
this subset is a complete programming language, which means that anything that can be
computed can be expressed in this language. Any program ever written could be rewritten
using only the language features you have learned so far (actually, you would need a few
commands to control devices like the mouse, disks, etc., but that’s all).

Proving that claim is a nontrivial exercise first accomplished by Alan Turing, one of the
first computer scientists (some would argue that he was a mathematician, but a lot of early
computer scientists started as mathematicians). Accordingly, it is known as the Turing
Thesis. For a more complete (and accurate) discussion of the Turing Thesis, I recommend
Michael Sipser’s book Introduction to the Theory of Computation.

To give you an idea of what you can do with the tools you have learned so far, we’ll eval-
uate a few recursively defined mathematical functions. A recursive definition is similar to
a circular definition, in the sense that the definition contains a reference to the thing being
defined. A truly circular definition is not very useful:

vorpal: An adjective used to describe something that is vorpal.

If you saw that definition in the dictionary, you might be annoyed. On the other hand,
if you looked up the definition of the factorial function, denoted with the symbol !, you
might get something like this:

0! = 1
n! = n(n � 1)!

56 Chapter 6. Fruitful functions

This definition says that the factorial of 0 is 1, and the factorial of any other value, n, is n
multiplied by the factorial of n � 1.

So 3! is 3 times 2!, which is 2 times 1!, which is 1 times 0!. Putting it all together, 3! equals 3
times 2 times 1 times 1, which is 6.

If you can write a recursive definition of something, you can write a Python program to
evaluate it. The first step is to decide what the parameters should be. In this case it should
be clear that takes an integer:

If the argument happens to be 0, all we have to do is return 1:

Otherwise, and this is the interesting part, we have to make a recursive call to find the
factorial of n � 1 and then multiply it by n:

The flow of execution for this program is similar to the flow of in Section 5.8. If
we call with the value 3:

Since 3 is not 0, we take the second branch and calculate the factorial of ...

Since 2 is not 0, we take the second branch and calculate the factorial of ...

Since 1 is not 0, we take the second branch and calculate the factorial
of ...

Since 0 equals 0, we take the first branch and return 1 without
making any more recursive calls.

The return value, 1, is multiplied by n, which is 1, and the result is
returned.

The return value, 1, is multiplied by n, which is 2, and the result is returned.

The return value (2) is multiplied by n, which is 3, and the result, 6, becomes the return
value of the function call that started the whole process.

Figure 6.1 shows what the stack diagram looks like for this sequence of function calls.

The return values are shown being passed back up the stack. In each frame, the return
value is the value of , which is the product of and .

In the last frame, the local variables and do not exist, because the branch
that creates them does not run.

6.6. Leap of faith 57

n 3 recurse 2

recurse 1

recurse 1

__main__

factorial

n 2

n 1

n 0

factorial

factorial

factorial

1

1

2

6

1result

2

6result

result

Figure 6.1: Stack diagram.

6.6 Leap of faith

Following the flow of execution is one way to read programs, but it can quickly become
overwhelming. An alternative is what I call the “leap of faith”. When you come to a
function call, instead of following the flow of execution, you assume that the function works
correctly and returns the right result.

In fact, you are already practicing this leap of faith when you use built-in functions. When
you call or , you don’t examine the bodies of those functions. You just
assume that they work because the people who wrote the built-in functions were good
programmers.

The same is true when you call one of your own functions. For example, in Section 6.4, we
wrote a function called that determines whether one number is divisible by
another. Once we have convinced ourselves that this function is correct—by examining the
code and testing—we can use the function without looking at the body again.

The same is true of recursive programs. When you get to the recursive call, instead of
following the flow of execution, you should assume that the recursive call works (returns
the correct result) and then ask yourself, “Assuming that I can find the factorial of n � 1,
can I compute the factorial of n?” It is clear that you can, by multiplying by n.

Of course, it’s a bit strange to assume that the function works correctly when you haven’t
finished writing it, but that’s why it’s called a leap of faith!

6.7 One more example

After , the most common example of a recursively defined mathematical func-
tion is , which has the following definition (see

):

fibonacci(0) = 0
fibonacci(1) = 1
fibonacci(n) = fibonacci(n � 1) + fibonacci(n � 2)

Translated into Python, it looks like this:

http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Fibonacci_number

58 Chapter 6. Fruitful functions

If you try to follow the flow of execution here, even for fairly small values of n, your head
explodes. But according to the leap of faith, if you assume that the two recursive calls work
correctly, then it is clear that you get the right result by adding them together.

6.8 Checking types
What happens if we call and give it 1.5 as an argument?

It looks like an infinite recursion. How can that be? The function has a base case—when
. But if is not an integer, we can miss the base case and recurse forever.

In the first recursive call, the value of is 0.5. In the next, it is -0.5. From there, it gets
smaller (more negative), but it will never be 0.

We have two choices. We can try to generalize the function to work with
floating-point numbers, or we can make check the type of its argument. The
first option is called the gamma function and it’s a little beyond the scope of this book. So
we’ll go for the second.

We can use the built-in function to verify the type of the argument. While
we’re at it, we can also make sure the argument is positive:

The first base case handles nonintegers; the second handles negative integers. In both
cases, the program prints an error message and returns to indicate that something
went wrong:

The whole is the sum of its parts. If the parts
work, chances are the whole will also work.

6.9. Debugging 59

If we get past both checks, we know that n is positive or zero, so we can prove that the
recursion terminates.

This program demonstrates a pattern sometimes called a guardian. The first two condi-
tionals act as guardians, protecting the code that follows from values that might cause an
error. The guardians make it possible to prove the correctness of the code.

In Section 11.4 we will see a more flexible alternative to printing an error message: raising
an exception.

6.9 Debugging

Breaking a large program into smaller functions creates natural checkpoints for debugging.
If a function is not working, there are three possibilities to consider:

• There is something wrong with the arguments the function is getting; a precondition
is violated.

• There is something wrong with the function; a postcondition is violated.

• There is something wrong with the return value or the way it is being used.

To rule out the first possibility, you can add a statement at the beginning of the
function and display the values of the parameters (and maybe their types). Or you can
write code that checks the preconditions explicitly.

If the parameters look good, add a statement before each statement and
display the return value. If possible, check the result by hand. Consider calling the function
with values that make it easy to check the result (as in Section 6.2).

If the function seems to be working, look at the function call to make sure the return value
is being used correctly (or used at all!).

Adding print statements at the beginning and end of a function can help make the flow of
execution more visible. For example, here is a version of with print statements:

is a string of space characters that controls the indentation of the output. Here is the
result of :

60 Chapter 6. Fruitful functions

If you are confused about the flow of execution, this kind of output can be helpful. It takes
some time to develop effective scaffolding, but a little bit of scaffolding can save a lot of
debugging.

6.10 Glossary
temporary variable: A variable used to store an intermediate value in a complex calcula-

tion.

dead code: Part of a program that can never run, often because it appears after a
statement.

incremental development: A program development plan intended to avoid debugging by
adding and testing only a small amount of code at a time.

scaffolding: Code that is used during program development but is not part of the final
version.

guardian: A programming pattern that uses a conditional statement to check for and han-
dle circumstances that might cause an error.

6.11 Exercises

Exercise 6.1. Draw a stack diagram for the following program. What does the program print?

6.11. Exercises 61

Exercise 6.2. The Ackermann function, A(m, n), is defined:

A(m, n) =

8
><

>:

n + 1 if m = 0
A(m � 1, 1) if m > 0 and n = 0
A(m � 1, A(m, n � 1)) if m > 0 and n > 0.

See . Write a function named
that evaluates the Ackermann function. Use your function to evaluate , which should be
125. What happens for larger values of and ? Solution:

.
Exercise 6.3. A palindrome is a word that is spelled the same backward and forward, like “noon”
and “redivider”. Recursively, a word is a palindrome if the first and last letters are the same and the
middle is a palindrome.

The following are functions that take a string argument and return the first, last, and middle letters:

We’ll see how they work in Chapter 8.

1. Type these functions into a file named and test them out. What happens if
you call with a string with two letters? One letter? What about the empty string,
which is written and contains no letters?

2. Write a function called that takes a string argument and returns if it
is a palindrome and otherwise. Remember that you can use the built-in function
to check the length of a string.

Solution: .
Exercise 6.4. A number, a, is a power of b if it is divisible by b and a/b is a power of b. Write a
function called that takes parameters and and returns if is a power of . Note:
you will have to think about the base case.
Exercise 6.5. The greatest common divisor (GCD) of a and b is the largest number that divides
both of them with no remainder.

One way to find the GCD of two numbers is based on the observation that if r is the remainder when
a is divided by b, then gcd(a, b) = gcd(b, r). As a base case, we can use gcd(a, 0) = a.

Write a function called that takes parameters and and returns their greatest common divisor.

Credit: This exercise is based on an example from Abelson and Sussman’s Structure and Interpre-
tation of Computer Programs.

http://en.wikipedia.org/wiki/Ackermann_function
http://thinkpython2.com/code/ackermann.py
http://thinkpython2.com/code/ackermann.py
http://thinkpython2.com/code/palindrome_soln.py

62 Chapter 6. Fruitful functions

Chapter 7

Iteration

This chapter is about iteration, which is the ability to run a block of statements repeatedly.
We saw a kind of iteration, using recursion, in Section 5.8. We saw another kind, using a

loop, in Section 4.2. In this chapter we’ll see yet another kind, using a statement.
But first I want to say a little more about variable assignment.

7.1 Reassignment

As you may have discovered, it is legal to make more than one assignment to the same
variable. A new assignment makes an existing variable refer to a new value (and stop
referring to the old value).

The first time we display , its value is 5; the second time, its value is 7.

Figure 7.1 shows what reassignment looks like in a state diagram.

At this point I want to address a common source of confusion. Because Python uses the
equal sign () for assignment, it is tempting to interpret a statement like as a mathe-
matical proposition of equality; that is, the claim that and are equal. But this interpre-
tation is wrong.

First, equality is a symmetric relationship and assignment is not. For example, in math-
ematics, if a = 7 then 7 = a. But in Python, the statement is legal and is
not.

Also, in mathematics, a proposition of equality is either true or false for all time. If a =
b now, then a will always equal b. In Python, an assignment statement can make two
variables equal, but they don’t have to stay that way:

64 Chapter 7. Iteration

7

5
x

Figure 7.1: State diagram.

The third line changes the value of but does not change the value of , so they are no
longer equal.

Reassigning variables is often useful, but you should use it with caution. If the values of
variables change frequently, it can make the code difficult to read and debug.

7.2 Updating variables

A common kind of reassignment is an update, where the new value of the variable depends
on the old.

This means “get the current value of , add one, and then update with the new value.”

If you try to update a variable that doesn’t exist, you get an error, because Python evaluates
the right side before it assigns a value to :

Before you can update a variable, you have to initialize it, usually with a simple assign-
ment:

Updating a variable by adding 1 is called an increment; subtracting 1 is called a decrement.

7.3 The statement

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks
without making errors is something that computers do well and people do poorly. In a
computer program, repetition is also called iteration.

We have already seen two functions, and , that iterate using recursion.
Because iteration is so common, Python provides language features to make it easier. One
is the statement we saw in Section 4.2. We’ll get back to that later.

Another is the statement. Here is a version of that uses a statement:

7.3. The statement 65

You can almost read the statement as if it were English. It means, “While is greater
than 0, display the value of and then decrement . When you get to 0, display the word

”

More formally, here is the flow of execution for a statement:

1. Determine whether the condition is true or false.

2. If false, exit the statement and continue execution at the next statement.

3. If the condition is true, run the body and then go back to step 1.

This type of flow is called a loop because the third step loops back around to the top.

The body of the loop should change the value of one or more variables so that the condition
becomes false eventually and the loop terminates. Otherwise the loop will repeat forever,
which is called an infinite loop. An endless source of amusement for computer scientists
is the observation that the directions on shampoo, “Lather, rinse, repeat”, are an infinite
loop.

In the case of , we can prove that the loop terminates: if is zero or negative, the
loop never runs. Otherwise, gets smaller each time through the loop, so eventually we
have to get to 0.

For some other loops, it is not so easy to tell. For example:

The condition for this loop is , so the loop will continue until is , which makes
the condition false.

Each time through the loop, the program outputs the value of and then checks whether
it is even or odd. If it is even, is divided by 2. If it is odd, the value of is replaced with

. For example, if the argument passed to is 3, the resulting values of
are 3, 10, 5, 16, 8, 4, 2, 1.

Since sometimes increases and sometimes decreases, there is no obvious proof that will
ever reach 1, or that the program terminates. For some particular values of , we can prove
termination. For example, if the starting value is a power of two, will be even every
time through the loop until it reaches 1. The previous example ends with such a sequence,
starting with 16.

The hard question is whether we can prove that this program terminates for all posi-
tive values of . So far, no one has been able to prove it or disprove it! (See

.)

http://en.wikipedia.org/wiki/Collatz_conjecture
http://en.wikipedia.org/wiki/Collatz_conjecture

66 Chapter 7. Iteration

As an exercise, rewrite the function from Section 5.8 using iteration instead of
recursion.

7.4
Sometimes you don’t know it’s time to end a loop until you get half way through the body.
In that case you can use the statement to jump out of the loop.

For example, suppose you want to take input from the user until they type . You could
write:

The loop condition is , which is always true, so the loop runs until it hits the break
statement.

Each time through, it prompts the user with an angle bracket. If the user types , the
statement exits the loop. Otherwise the program echoes whatever the user types and

goes back to the top of the loop. Here’s a sample run:

This way of writing loops is common because you can check the condition anywhere
in the loop (not just at the top) and you can express the stop condition affirmatively (“stop
when this happens”) rather than negatively (“keep going until that happens”).

7.5 Square roots
Loops are often used in programs that compute numerical results by starting with an ap-
proximate answer and iteratively improving it.

For example, one way of computing square roots is Newton’s method. Suppose that you
want to know the square root of a. If you start with almost any estimate, x, you can com-
pute a better estimate with the following formula:

y =
x + a/x

2
For example, if a is 4 and x is 3:

7.6. Algorithms 67

The result is closer to the correct answer (
p

4 = 2). If we repeat the process with the new
estimate, it gets even closer:

After a few more updates, the estimate is almost exact:

In general we don’t know ahead of time how many steps it takes to get to the right answer,
but we know when we get there because the estimate stops changing:

When , we can stop. Here is a loop that starts with an initial estimate, , and im-
proves it until it stops changing:

For most values of this works fine, but in general it is dangerous to test equality.
Floating-point values are only approximately right: most rational numbers, like 1/3, and
irrational numbers, like

p
2, can’t be represented exactly with a .

Rather than checking whether and are exactly equal, it is safer to use the built-in func-
tion to compute the absolute value, or magnitude, of the difference between them:

Where has a value like that determines how close is close enough.

7.6 Algorithms
Newton’s method is an example of an algorithm: it is a mechanical process for solving a
category of problems (in this case, computing square roots).

68 Chapter 7. Iteration

To understand what an algorithm is, it might help to start with something that is not an
algorithm. When you learned to multiply single-digit numbers, you probably memorized
the multiplication table. In effect, you memorized 100 specific solutions. That kind of
knowledge is not algorithmic.

But if you were “lazy”, you might have learned a few tricks. For example, to find the
product of n and 9, you can write n � 1 as the first digit and 10 � n as the second digit.
This trick is a general solution for multiplying any single-digit number by 9. That’s an
algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction with borrow-
ing, and long division are all algorithms. One of the characteristics of algorithms is that
they do not require any intelligence to carry out. They are mechanical processes where
each step follows from the last according to a simple set of rules.

Executing algorithms is boring, but designing them is interesting, intellectually challeng-
ing, and a central part of computer science.

Some of the things that people do naturally, without difficulty or conscious thought, are
the hardest to express algorithmically. Understanding natural language is a good example.
We all do it, but so far no one has been able to explain how we do it, at least not in the form
of an algorithm.

7.7 Debugging
As you start writing bigger programs, you might find yourself spending more time debug-
ging. More code means more chances to make an error and more places for bugs to hide.

One way to cut your debugging time is “debugging by bisection”. For example, if there
are 100 lines in your program and you check them one at a time, it would take 100 steps.

Instead, try to break the problem in half. Look at the middle of the program, or near it, for
an intermediate value you can check. Add a statement (or something else that has a
verifiable effect) and run the program.

If the mid-point check is incorrect, there must be a problem in the first half of the program.
If it is correct, the problem is in the second half.

Every time you perform a check like this, you halve the number of lines you have to search.
After six steps (which is fewer than 100), you would be down to one or two lines of code,
at least in theory.

In practice it is not always clear what the “middle of the program” is and not always pos-
sible to check it. It doesn’t make sense to count lines and find the exact midpoint. Instead,
think about places in the program where there might be errors and places where it is easy
to put a check. Then choose a spot where you think the chances are about the same that
the bug is before or after the check.

7.8 Glossary
reassignment: Assigning a new value to a variable that already exists.

7.9. Exercises 69

update: An assignment where the new value of the variable depends on the old.

initialization: An assignment that gives an initial value to a variable that will be updated.

increment: An update that increases the value of a variable (often by one).

decrement: An update that decreases the value of a variable.

iteration: Repeated execution of a set of statements using either a recursive function call
or a loop.

infinite loop: A loop in which the terminating condition is never satisfied.

algorithm: A general process for solving a category of problems.

7.9 Exercises
Exercise 7.1. Copy the loop from Section 7.5 and encapsulate it in a function called that
takes as a parameter, chooses a reasonable value of , and returns an estimate of the square root of

.

To test it, write a function named that prints a table like this:

The first column is a number, a; the second column is the square root of a computed with ;
the third column is the square root computed by ; the fourth column is the absolute value
of the difference between the two estimates.
Exercise 7.2. The built-in function takes a string and evaluates it using the Python inter-
preter. For example:

Write a function called that iteratively prompts the user, takes the resulting input and
evaluates it using , and prints the result.

It should continue until the user enters , and then return the value of the last expression it
evaluated.

70 Chapter 7. Iteration

Exercise 7.3. The mathematician Srinivasa Ramanujan found an infinite series that can be used to
generate a numerical approximation of 1/p:

1
p

=
2
p

2
9801

•

Â
k=0

(4k)!(1103 + 26390k)
(k!)43964k

Write a function called that uses this formula to compute and return an estimate of
p. It should use a loop to compute terms of the summation until the last term is smaller than

(which is Python notation for 10�15). You can check the result by comparing it to .

Solution: .

http://thinkpython2.com/code/pi.py

Chapter 8

Strings

Strings are not like integers, floats, and booleans. A string is a sequence, which means it is
an ordered collection of other values. In this chapter you’ll see how to access the characters
that make up a string, and you’ll learn about some of the methods strings provide.

8.1 A string is a sequence
A string is a sequence of characters. You can access the characters one at a time with the
bracket operator:

The second statement selects character number 1 from and assigns it to .

The expression in brackets is called an index. The index indicates which character in the
sequence you want (hence the name).

But you might not get what you expect:

For most people, the first letter of is , not . But for computer scientists, the
index is an offset from the beginning of the string, and the offset of the first letter is zero.

So is the 0th letter (“zero-eth”) of , is the 1th letter (“one-eth”), and is the 2th
letter (“two-eth”).

As an index you can use an expression that contains variables and operators:

72 Chapter 8. Strings

But the value of the index has to be an integer. Otherwise you get:

8.2

is a built-in function that returns the number of characters in a string:

To get the last letter of a string, you might be tempted to try something like this:

The reason for the is that there is no letter in with the index 6. Since
we started counting at zero, the six letters are numbered 0 to 5. To get the last character,
you have to subtract 1 from :

Or you can use negative indices, which count backward from the end of the string. The
expression yields the last letter, yields the second to last, and so on.

8.3 Traversal with a loop

A lot of computations involve processing a string one character at a time. Often they start
at the beginning, select each character in turn, do something to it, and continue until the
end. This pattern of processing is called a traversal. One way to write a traversal is with a

loop:

This loop traverses the string and displays each letter on a line by itself. The loop condition
is , so when is equal to the length of the string, the condition is
false, and the body of the loop doesn’t run. The last character accessed is the one with the
index , which is the last character in the string.

As an exercise, write a function that takes a string as an argument and displays the letters
backward, one per line.

Another way to write a traversal is with a loop:

8.4. String slices 73

fruit b a n na a ’

0 1 2 3 4 5 6index

’

Figure 8.1: Slice indices.

Each time through the loop, the next character in the string is assigned to the variable
. The loop continues until no characters are left.

The following example shows how to use concatenation (string addition) and a loop
to generate an abecedarian series (that is, in alphabetical order). In Robert McCloskey’s
book Make Way for Ducklings, the names of the ducklings are Jack, Kack, Lack, Mack, Nack,
Ouack, Pack, and Quack. This loop outputs these names in order:

The output is:

Of course, that’s not quite right because “Ouack” and “Quack” are misspelled. As an
exercise, modify the program to fix this error.

8.4 String slices

A segment of a string is called a slice. Selecting a slice is similar to selecting a character:

The operator returns the part of the string from the “n-eth” character to the “m-eth”
character, including the first but excluding the last. This behavior is counterintuitive, but
it might help to imagine the indices pointing between the characters, as in Figure 8.1.

If you omit the first index (before the colon), the slice starts at the beginning of the string.
If you omit the second index, the slice goes to the end of the string:

74 Chapter 8. Strings

If the first index is greater than or equal to the second the result is an empty string, repre-
sented by two quotation marks:

An empty string contains no characters and has length 0, but other than that, it is the same
as any other string.

Continuing this example, what do you think means? Try it and see.

8.5 Strings are immutable

It is tempting to use the operator on the left side of an assignment, with the intention of
changing a character in a string. For example:

The “object” in this case is the string and the “item” is the character you tried to assign.
For now, an object is the same thing as a value, but we will refine that definition later
(Section 10.10).

The reason for the error is that strings are immutable, which means you can’t change an
existing string. The best you can do is create a new string that is a variation on the original:

This example concatenates a new first letter onto a slice of . It has no effect on the
original string.

8.6 Searching

What does the following function do?

8.7. Looping and counting 75

In a sense, is the inverse of the operator. Instead of taking an index and extracting
the corresponding character, it takes a character and finds the index where that character
appears. If the character is not found, the function returns .

This is the first example we have seen of a statement inside a loop. If
, the function breaks out of the loop and returns immediately.

If the character doesn’t appear in the string, the program exits the loop normally and re-
turns .

This pattern of computation—traversing a sequence and returning when we find what we
are looking for—is called a search.

As an exercise, modify so that it has a third parameter, the index in where it
should start looking.

8.7 Looping and counting

The following program counts the number of times the letter appears in a string:

This program demonstrates another pattern of computation called a counter. The variable
is initialized to 0 and then incremented each time an is found. When the loop exits,
contains the result—the total number of ’s.

As an exercise, encapsulate this code in a function named , and generalize it so that
it accepts the string and the letter as arguments.

Then rewrite the function so that instead of traversing the string, it uses the three-
parameter version of from the previous section.

8.8 String methods

Strings provide methods that perform a variety of useful operations. A method is similar
to a function—it takes arguments and returns a value—but the syntax is different. For
example, the method takes a string and returns a new string with all uppercase
letters.

Instead of the function syntax , it uses the method syntax .

76 Chapter 8. Strings

This form of dot notation specifies the name of the method, , and the name of the
string to apply the method to, . The empty parentheses indicate that this method
takes no arguments.

A method call is called an invocation; in this case, we would say that we are invoking
on .

As it turns out, there is a string method named that is remarkably similar to the
function we wrote:

In this example, we invoke on and pass the letter we are looking for as a param-
eter.

Actually, the method is more general than our function; it can find substrings, not just
characters:

By default, starts at the beginning of the string, but it can take a second argument, the
index where it should start:

This is an example of an optional argument; can also take a third argument, the index
where it should stop:

This search fails because does not appear in the index range from to , not including .
Searching up to, but not including, the second index makes consistent with the slice
operator.

8.9 The operator
The word is a boolean operator that takes two strings and returns if the first ap-
pears as a substring in the second:

For example, the following function prints all the letters from that also appear in
:

8.10. String comparison 77

With well-chosen variable names, Python sometimes reads like English. You could read
this loop, “for (each) letter in (the first) word, if (the) letter (appears) in (the second) word,
print (the) letter.”

Here’s what you get if you compare apples and oranges:

8.10 String comparison

The relational operators work on strings. To see if two strings are equal:

Other relational operations are useful for putting words in alphabetical order:

Python does not handle uppercase and lowercase letters the same way people do. All the
uppercase letters come before all the lowercase letters, so:

A common way to address this problem is to convert strings to a standard format, such as
all lowercase, before performing the comparison. Keep that in mind in case you have to
defend yourself against a man armed with a Pineapple.

8.11 Debugging

When you use indices to traverse the values in a sequence, it is tricky to get the beginning
and end of the traversal right. Here is a function that is supposed to compare two words
and return if one of the words is the reverse of the other, but it contains two errors:

78 Chapter 8. Strings
78 Chapter 8. Strings

The first statement checks whether the words are the same length. If not, we can return
immediately. Otherwise, for the rest of the function, we can assume that the words

are the same length. This is an example of the guardian pattern in Section 6.8.

and are indices: traverses forward while traverses backward. If we
find two letters that don’t match, we can return immediately. If we get through the
whole loop and all the letters match, we return .

If we test this function with the words “pots” and “stop”, we expect the return value ,
but we get an IndexError:

For debugging this kind of error, my first move is to print the values of the indices imme-
diately before the line where the error appears.

Now when I run the program again, I get more information:

The first time through the loop, the value of is 4, which is out of range for the
string . The index of the last character is 3, so the initial value for should be

.

If I fix that error and run the program again, I get:

This time we get the right answer, but it looks like the loop only ran three times, which is
suspicious. To get a better idea of what is happening, it is useful to draw a state diagram.
During the first iteration, the frame for is shown in Figure 8.2.

I took some license by arranging the variables in the frame and adding dotted lines to show
that the values of and indicate characters in and .

Starting with this diagram, run the program on paper, changing the values of and
during each iteration. Find and fix the second error in this function.

Use PythonTutor to create the state diagram. Step through to the end of execution.

8.11 Debugging 79
As you step through execution of the code for is_reverse() PythonTutor updates the variables
in the state diagram. It is easy to see that the code only runs three times through the loop, never
comparing the fourth letters. Figure 8.2 shows the state for is_reverse() at the end of execution.

Figure 8.2: State diagram from PythonTutor

80 Chapter 8. Strings

8.12. Glossary 79

i 0 j 3

word1 ’pots’ word2 ’stop’

Figure 8.2: State diagram.

8.12 Glossary
object: Something a variable can refer to. For now, you can use “object” and “value”

interchangeably.

sequence: An ordered collection of values where each value is identified by an integer
index.

item: One of the values in a sequence.

index: An integer value used to select an item in a sequence, such as a character in a string.
In Python indices start from 0.

slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length 0, represented by two quotation
marks.

immutable: The property of a sequence whose items cannot be changed.

traverse: To iterate through the items in a sequence, performing a similar operation on
each.

search: A pattern of traversal that stops when it finds what it is looking for.

counter: A variable used to count something, usually initialized to zero and then incre-
mented.

invocation: A statement that calls a method.

optional argument: A function or method argument that is not required.

8.13 Exercises
Exercise 8.1. Read the documentation of the string methods at

. You might want to experiment with some of them
to make sure you understand how they work. and are particularly useful.

The documentation uses a syntax that might be confusing. For example, in
, the brackets indicate optional arguments. So is required, but

is optional, and if you include , then is optional.
Exercise 8.2. There is a string method called that is similar to the function in Section 8.7.
Read the documentation of this method and write an invocation that counts the number of ’s in

.
Exercise 8.3. A string slice can take a third index that specifies the “step size”; that is, the number
of spaces between successive characters. A step size of 2 means every other character; 3 means every
third, etc.

8.12. Glossary 79

i 0 j 3

word1 ’pots’ word2 ’stop’

Figure 8.2: State diagram.

8.12 Glossary
object: Something a variable can refer to. For now, you can use “object” and “value”

interchangeably.

sequence: An ordered collection of values where each value is identified by an integer
index.

item: One of the values in a sequence.

index: An integer value used to select an item in a sequence, such as a character in a string.
In Python indices start from 0.

slice: A part of a string specified by a range of indices.

empty string: A string with no characters and length 0, represented by two quotation
marks.

immutable: The property of a sequence whose items cannot be changed.

traverse: To iterate through the items in a sequence, performing a similar operation on
each.

search: A pattern of traversal that stops when it finds what it is looking for.

counter: A variable used to count something, usually initialized to zero and then incre-
mented.

invocation: A statement that calls a method.

optional argument: A function or method argument that is not required.

8.13 Exercises
Exercise 8.1. Read the documentation of the string methods at

. You might want to experiment with some of them
to make sure you understand how they work. and are particularly useful.

The documentation uses a syntax that might be confusing. For example, in
, the brackets indicate optional arguments. So is required, but

is optional, and if you include , then is optional.
Exercise 8.2. There is a string method called that is similar to the function in Section 8.7.
Read the documentation of this method and write an invocation that counts the number of ’s in

.
Exercise 8.3. A string slice can take a third index that specifies the “step size”; that is, the number
of spaces between successive characters. A step size of 2 means every other character; 3 means every
third, etc.

The variable, data, represents comma-separated data. However, there are some problems
with it. Write a function called clean_data() to read the (string) data, clean it up, and
return clean data in list format. Use string methods you learned about in the Python docs.
data = '#!@Name,Email&!,$#Classification*(,@#CS Course\n,#!@Erica
Jonnson,erica.j18@student.parishepiscopal.org&!,$#Senior*(,@#AP CSA\n,#!
@John Ericsson,john.e16@student.parishepiscopal.org&!,
$#Sophomore*(,@#Coding for OOP'

8.13 Exercises 81
80 Chapter 8. Strings

A step size of -1 goes through the word backwards, so the slice generates a reversed string.

Use this idiom to write a one-line version of from Exercise 6.3.
Exercise 8.4. The following functions are all intended to check whether a string contains any
lowercase letters, but at least some of them are wrong. For each function, describe what the function
actually does (assuming that the parameter is a string).

Exercise 8.5. A Caesar cypher is a weak form of encryption that involves “rotating” each letter by
a fixed number of places. To rotate a letter means to shift it through the alphabet, wrapping around
to the beginning if necessary, so ’A’ rotated by 3 is ’D’ and ’Z’ rotated by 1 is ’A’.

To rotate a word, rotate each letter by the same amount. For example, “cheer” rotated by 7 is “jolly”
and “melon” rotated by -10 is “cubed”. In the movie 2001: A Space Odyssey, the ship computer
is called HAL, which is IBM rotated by -1.

Write a function called that takes a string and an integer as parameters, and returns
a new string that contains the letters from the original string rotated by the given amount.

You might want to use the built-in function , which converts a character to a numeric code, and

82 Chapter 8. Strings
8.13. Exercises 81

, which converts numeric codes to characters. Letters of the alphabet are encoded in alphabetical
order, so for example:

Because is the two-eth letter of the alphabet. But beware: the numeric codes for upper case
letters are different.

Potentially offensive jokes on the Internet are sometimes encoded in ROT13, which is a Caesar
cypher with rotation 13. If you are not easily offended, find and decode some of them. Solution:

.

Chapter 9

Case study: word play

This chapter presents the second case study, which involves solving word puzzles by
searching for words that have certain properties. For example, we’ll find the longest palin-
dromes in English and search for words whose letters appear in alphabetical order. And
I will present another program development plan: reduction to a previously solved prob-
lem.

9.1 Reading word lists

For the exercises in this chapter we need a list of English words. There are lots of word
lists available on the Web, but the one most suitable for our purpose is one of the word lists
collected and contributed to the public domain by Grady Ward as part of the Moby lexi-
con project (see). It is a list of 113,809 official
crosswords; that is, words that are considered valid in crossword puzzles and other word
games. In the Moby collection, the filename is ; you can download a copy,
with the simpler name , from .

This file is in plain text, so you can open it with a text editor, but you can also read it from
Python. The built-in function takes the name of the file as a parameter and returns a
file object you can use to read the file.

is a common name for a file object used for input. The file object provides several
methods for reading, including , which reads characters from the file until it gets
to a newline and returns the result as a string:

The first word in this particular list is “aa”, which is a kind of lava. The sequence
represents two whitespace characters, a carriage return and a newline, that separate this
word from the next.

The file object keeps track of where it is in the file, so if you call again, you get
the next word:

http://wikipedia.org/wiki/Moby_Project
http://thinkpython2.com/code/words.txt

84 Chapter 9. Case study: word play

The next word is “aah”, which is a perfectly legitimate word, so stop looking at me like
that. Or, if it’s the whitespace that’s bothering you, we can get rid of it with the string
method :

You can also use a file object as part of a loop. This program reads and
prints each word, one per line:

9.2 Exercises
There are solutions to these exercises in the next section. You should at least attempt each
one before you read the solutions.
Exercise 9.1. Write a program that reads and prints only the words with more than 20
characters (not counting whitespace).
Exercise 9.2. In 1939 Ernest Vincent Wright published a 50,000 word novel called Gadsby that
does not contain the letter “e”. Since “e” is the most common letter in English, that’s not easy to
do.

In fact, it is difficult to construct a solitary thought without using that most common symbol. It is
slow going at first, but with caution and hours of training you can gradually gain facility.

All right, I’ll stop now.

Write a function called that returns if the given word doesn’t have the letter “e” in
it.

Modify your program from the previous section to print only the words that have no “e” and com-
pute the percentage of the words in the list that have no “e”.
Exercise 9.3. Write a function named that takes a word and a string of forbidden letters,
and that returns if the word doesn’t use any of the forbidden letters.

Modify your program to prompt the user to enter a string of forbidden letters and then print the
number of words that don’t contain any of them. Can you find a combination of 5 forbidden letters
that excludes the smallest number of words?
Exercise 9.4. Write a function named that takes a word and a string of letters, and
that returns if the word contains only letters in the list. Can you make a sentence using only
the letters ? Other than “Hoe alfalfa?”
Exercise 9.5. Write a function named that takes a word and a string of required letters,
and that returns if the word uses all the required letters at least once. How many words are
there that use all the vowels ? How about ?
Exercise 9.6. Write a function called that returns if the letters in a word
appear in alphabetical order (double letters are ok). How many abecedarian words are there?

9.3. Search 85

9.3 Search
All of the exercises in the previous section have something in common; they can be solved
with the search pattern we saw in Section 8.6. The simplest example is:

The loop traverses the characters in . If we find the letter “e”, we can immediately
return ; otherwise we have to go to the next letter. If we exit the loop normally, that
means we didn’t find an “e”, so we return .

You could write this function more concisely using the operator, but I started with this
version because it demonstrates the logic of the search pattern.

is a more general version of but it has the same structure:

We can return as soon as we find a forbidden letter; if we get to the end of the loop,
we return .

is similar except that the sense of the condition is reversed:

Instead of a list of forbidden letters, we have a list of available letters. If we find a letter in
that is not in , we can return .

is similar except that we reverse the role of the word and the string of letters:

Instead of traversing the letters in , the loop traverses the required letters. If any of the
required letters do not appear in the word, we can return .

If you were really thinking like a computer scientist, you would have recognized that
was an instance of a previously solved problem, and you would have written:

This is an example of a program development plan called reduction to a previously solved
problem, which means that you recognize the problem you are working on as an instance
of a solved problem and apply an existing solution.

86 Chapter 9. Case study: word play

9.4 Looping with indices
I wrote the functions in the previous section with loops because I only needed the
characters in the strings; I didn’t have to do anything with the indices.

For we have to compare adjacent letters, which is a little tricky with a
loop:

An alternative is to use recursion:

Another option is to use a loop:

The loop starts at and ends when . Each time through the loop, it com-
pares the ith character (which you can think of as the current character) to the i + 1th
character (which you can think of as the next).

If the next character is less than (alphabetically before) the current one, then we have dis-
covered a break in the abecedarian trend, and we return .

If we get to the end of the loop without finding a fault, then the word passes the test. To
convince yourself that the loop ends correctly, consider an example like . The
length of the word is 6, so the last time the loop runs is when is 4, which is the index of
the second-to-last character. On the last iteration, it compares the second-to-last character
to the last, which is what we want.

Here is a version of (see Exercise 6.3) that uses two indices; one starts at
the beginning and goes up; the other starts at the end and goes down.

9.5. Debugging 87

Or we could reduce to a previously solved problem and write:

Using from Section 8.11.

9.5 Debugging

Testing programs is hard. The functions in this chapter are relatively easy to test because
you can check the results by hand. Even so, it is somewhere between difficult and impos-
sible to choose a set of words that test for all possible errors.

Taking as an example, there are two obvious cases to check: words that have an
‘e’ should return , and words that don’t should return . You should have no
trouble coming up with one of each.

Within each case, there are some less obvious subcases. Among the words that have an
“e”, you should test words with an “e” at the beginning, the end, and somewhere in the
middle. You should test long words, short words, and very short words, like the empty
string. The empty string is an example of a special case, which is one of the non-obvious
cases where errors often lurk.

In addition to the test cases you generate, you can also test your program with a word list
like . By scanning the output, you might be able to catch errors, but be careful:
you might catch one kind of error (words that should not be included, but are) and not
another (words that should be included, but aren’t).

In general, testing can help you find bugs, but it is not easy to generate a good set of
test cases, and even if you do, you can’t be sure your program is correct. According to a
legendary computer scientist:

Program testing can be used to show the presence of bugs, but never to show
their absence!

— Edsger W. Dijkstra

9.6 Glossary
file object: A value that represents an open file.

reduction to a previously solved problem: A way of solving a problem by expressing it
as an instance of a previously solved problem.

special case: A test case that is atypical or non-obvious (and less likely to be handled cor-
rectly).

88 Chapter 9. Case study: word play

9.7 Exercises

Exercise 9.7. This question is based on a Puzzler that was broadcast on the radio program Car
Talk ():

Give me a word with three consecutive double letters. I’ll give you a couple of words
that almost qualify, but don’t. For example, the word committee, c-o-m-m-i-t-t-e-e. It
would be great except for the ‘i’ that sneaks in there. Or Mississippi: M-i-s-s-i-s-s-i-
p-p-i. If you could take out those i’s it would work. But there is a word that has three
consecutive pairs of letters and to the best of my knowledge this may be the only word.
Of course there are probably 500 more but I can only think of one. What is the word?

Write a program to find it. Solution: .
Exercise 9.8. Here’s another Car Talk Puzzler (

):

“I was driving on the highway the other day and I happened to notice my odometer.
Like most odometers, it shows six digits, in whole miles only. So, if my car had 300,000
miles, for example, I’d see 3-0-0-0-0-0.
“Now, what I saw that day was very interesting. I noticed that the last 4 digits were
palindromic; that is, they read the same forward as backward. For example, 5-4-4-5 is a
palindrome, so my odometer could have read 3-1-5-4-4-5.
“One mile later, the last 5 numbers were palindromic. For example, it could have read
3-6-5-4-5-6. One mile after that, the middle 4 out of 6 numbers were palindromic. And
you ready for this? One mile later, all 6 were palindromic!
“The question is, what was on the odometer when I first looked?”

Write a Python program that tests all the six-digit numbers and prints any numbers that satisfy
these requirements. Solution: .
Exercise 9.9. Here’s another Car Talk Puzzler you can solve with a search (

):

“Recently I had a visit with my mom and we realized that the two digits that make
up my age when reversed resulted in her age. For example, if she’s 73, I’m 37. We
wondered how often this has happened over the years but we got sidetracked with other
topics and we never came up with an answer.
“When I got home I figured out that the digits of our ages have been reversible six times
so far. I also figured out that if we’re lucky it would happen again in a few years, and
if we’re really lucky it would happen one more time after that. In other words, it would
have happened 8 times over all. So the question is, how old am I now?”

Write a Python program that searches for solutions to this Puzzler. Hint: you might find the string
method useful.

Solution: .

http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk1.py
http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk2.py
http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/cartalk3.py

Chapter 10

Lists

This chapter presents one of Python’s most useful built-in types, lists. You will also learn
more about objects and what can happen when you have more than one name for the same
object.

10.1 A list is a sequence

Like a string, a list is a sequence of values. In a string, the values are characters; in a list,
they can be any type. The values in a list are called elements or sometimes items.

There are several ways to create a new list; the simplest is to enclose the elements in square
brackets (and):

The first example is a list of four integers. The second is a list of three strings. The elements
of a list don’t have to be the same type. The following list contains a string, a float, an
integer, and (lo!) another list:

A list within another list is nested.

A list that contains no elements is called an empty list; you can create one with empty
brackets, .

As you might expect, you can assign list values to variables:

90 Chapter 10. Lists

0

1

list

numbers

123

5

list

empty

0

1

2

’Cheddar’

’Edam’

’Gouda’

list

cheeses

42

Figure 10.1: State diagram.

10.2 Lists are mutable
The syntax for accessing the elements of a list is the same as for accessing the characters
of a string—the bracket operator. The expression inside the brackets specifies the index.
Remember that the indices start at 0:

Unlike strings, lists are mutable. When the bracket operator appears on the left side of an
assignment, it identifies the element of the list that will be assigned.

The one-eth element of , which used to be 123, is now 5.

Figure 10.1 shows the state diagram for , and :

Lists are represented by boxes with the word “list” outside and the elements of the list
inside. refers to a list with three elements indexed 0, 1 and 2. contains
two elements; the diagram shows that the value of the second element has been reassigned
from 123 to 5. refers to a list with no elements.

List indices work the same way as string indices:

• Any integer expression can be used as an index.

• If you try to read or write an element that does not exist, you get an .

• If an index has a negative value, it counts backward from the end of the list.

The operator also works on lists.

10.3. Traversing a list 91

10.3 Traversing a list

The most common way to traverse the elements of a list is with a loop. The syntax is
the same as for strings:

This works well if you only need to read the elements of the list. But if you want to write
or update the elements, you need the indices. A common way to do that is to combine the
built-in functions and :

This loop traverses the list and updates each element. returns the number of elements
in the list. returns a list of indices from 0 to n � 1, where n is the length of the list.
Each time through the loop gets the index of the next element. The assignment statement
in the body uses to read the old value of the element and to assign the new value.

A loop over an empty list never runs the body:

Although a list can contain another list, the nested list still counts as a single element. The
length of this list is four:

10.4 List operations

The operator concatenates lists:

The operator repeats a list a given number of times:

The first example repeats four times. The second example repeats the list
three times.

10.5 List slices

The slice operator also works on lists:

92 Chapter 10. Lists

If you omit the first index, the slice starts at the beginning. If you omit the second, the slice
goes to the end. So if you omit both, the slice is a copy of the whole list.

Since lists are mutable, it is often useful to make a copy before performing operations that
modify lists.

A slice operator on the left side of an assignment can update multiple elements:

10.6 List methods

Python provides methods that operate on lists. For example, adds a new element
to the end of a list:

takes a list as an argument and appends all of the elements:

This example leaves unmodified.

arranges the elements of the list from low to high:

Most list methods are void; they modify the list and return . If you accidentally write
, you will be disappointed with the result.

10.7. Map, filter and reduce 93

10.7 Map, filter and reduce

To add up all the numbers in a list, you can use a loop like this:

is initialized to 0. Each time through the loop, gets one element from the list.
The operator provides a short way to update a variable. This augmented assignment
statement,

is equivalent to

As the loop runs, accumulates the sum of the elements; a variable used this way is
sometimes called an accumulator.

Adding up the elements of a list is such a common operation that Python provides it as a
built-in function, :

An operation like this that combines a sequence of elements into a single value is some-
times called reduce.

Sometimes you want to traverse one list while building another. For example, the following
function takes a list of strings and returns a new list that contains capitalized strings:

is initialized with an empty list; each time through the loop, we append the next ele-
ment. So is another kind of accumulator.

An operation like is sometimes called a map because it “maps” a function
(in this case the method) onto each of the elements in a sequence.

Another common operation is to select some of the elements from a list and return a sublist.
For example, the following function takes a list of strings and returns a list that contains
only the uppercase strings:

94 Chapter 10. Lists

is a string method that returns if the string contains only upper case letters.

An operation like is called a filter because it selects some of the elements and
filters out the others.

Most common list operations can be expressed as a combination of map, filter and reduce.

10.8 Deleting elements
There are several ways to delete elements from a list. If you know the index of the element
you want, you can use :

modifies the list and returns the element that was removed. If you don’t provide an
index, it deletes and returns the last element.

If you don’t need the removed value, you can use the operator:

If you know the element you want to remove (but not the index), you can use :

The return value from is .

To remove more than one element, you can use with a slice index:

As usual, the slice selects all the elements up to but not including the second index.

10.9 Lists and strings
A string is a sequence of characters and a list is a sequence of values, but a list of characters
is not the same as a string. To convert from a string to a list of characters, you can use :

10.10. Objects and values 95

a

b
’banana’

a

b

’banana’

’banana’

Figure 10.2: State diagram.

Because is the name of a built-in function, you should avoid using it as a variable
name. I also avoid because it looks too much like . So that’s why I use .

The function breaks a string into individual letters. If you want to break a string into
words, you can use the method:

An optional argument called a delimiter specifies which characters to use as word bound-
aries. The following example uses a hyphen as a delimiter:

is the inverse of . It takes a list of strings and concatenates the elements. is
a string method, so you have to invoke it on the delimiter and pass the list as a parameter:

In this case the delimiter is a space character, so puts a space between words. To
concatenate strings without spaces, you can use the empty string, , as a delimiter.

10.10 Objects and values

If we run these assignment statements:

We know that and both refer to a string, but we don’t know whether they refer to the
same string. There are two possible states, shown in Figure 10.2.

In one case, and refer to two different objects that have the same value. In the second
case, they refer to the same object.

To check whether two variables refer to the same object, you can use the operator.

96 Chapter 10. Lists

a

b

[1, 2, 3]

[1, 2, 3]

Figure 10.3: State diagram.

a

b
[1, 2, 3]

Figure 10.4: State diagram.

In this example, Python only created one string object, and both and refer to it. But
when you create two lists, you get two objects:

So the state diagram looks like Figure 10.3.

In this case we would say that the two lists are equivalent, because they have the same el-
ements, but not identical, because they are not the same object. If two objects are identical,
they are also equivalent, but if they are equivalent, they are not necessarily identical.

Until now, we have been using “object” and “value” interchangeably, but it is more precise
to say that an object has a value. If you evaluate , you get a list object whose
value is a sequence of integers. If another list has the same elements, we say it has the
same value, but it is not the same object.

10.11 Aliasing

If refers to an object and you assign , then both variables refer to the same object:

The state diagram looks like Figure 10.4.

The association of a variable with an object is called a reference. In this example, there are
two references to the same object.

An object with more than one reference has more than one name, so we say that the object
is aliased.

If the aliased object is mutable, changes made with one alias affect the other:

10.12. List arguments 97

0

1

2

’a’

’b’

’c’

list

t

letters

delete_head

__main__

Figure 10.5: Stack diagram.

Although this behavior can be useful, it is error-prone. In general, it is safer to avoid
aliasing when you are working with mutable objects.

For immutable objects like strings, aliasing is not as much of a problem. In this example:

It almost never makes a difference whether and refer to the same string or not.

10.12 List arguments

When you pass a list to a function, the function gets a reference to the list. If the function
modifies the list, the caller sees the change. For example, removes the first
element from a list:

Here’s how it is used:

The parameter and the variable are aliases for the same object. The stack diagram
looks like Figure 10.5.

Since the list is shared by two frames, I drew it between them.

It is important to distinguish between operations that modify lists and operations that cre-
ate new lists. For example, the method modifies a list, but the operator creates a
new list.

Here’s an example using :

98 Chapter 10. Lists

The return value from is .

Here’s an example using the operator:

The result of the operator is a new list, and the original list is unchanged.

This difference is important when you write functions that are supposed to modify lists.
For example, this function does not delete the head of a list:

The slice operator creates a new list and the assignment makes refer to it, but that doesn’t
affect the caller.

At the beginning of , and refer to the same list. At the end, refers
to a new list, but still refers to the original, unmodified list.

An alternative is to write a function that creates and returns a new list. For example,
returns all but the first element of a list:

This function leaves the original list unmodified. Here’s how it is used:

10.13 Debugging

Careless use of lists (and other mutable objects) can lead to long hours of debugging. Here
are some common pitfalls and ways to avoid them:

1. Most list methods modify the argument and return . This is the opposite of the
string methods, which return a new string and leave the original alone.

If you are used to writing string code like this:

It is tempting to write list code like this:

10.13. Debugging 99

Because returns , the next operation you perform with is likely to fail.

Before using list methods and operators, you should read the documentation care-
fully and then test them in interactive mode.

2. Pick an idiom and stick with it.

Part of the problem with lists is that there are too many ways to do things. For exam-
ple, to remove an element from a list, you can use , , , or even a slice
assignment.

To add an element, you can use the method or the operator. Assuming that
is a list and is a list element, these are correct:

And these are wrong:

Try out each of these examples in interactive mode to make sure you understand
what they do. Notice that only the last one causes a runtime error; the other three are
legal, but they do the wrong thing.

3. Make copies to avoid aliasing.

If you want to use a method like that modifies the argument, but you need to
keep the original list as well, you can make a copy.

In this example you could also use the built-in function , which returns a new,
sorted list and leaves the original alone.

100 Chapter 10. Lists

10.14 Glossary
list: A sequence of values.

element: One of the values in a list (or other sequence), also called items.

nested list: A list that is an element of another list.

accumulator: A variable used in a loop to add up or accumulate a result.

augmented assignment: A statement that updates the value of a variable using an opera-
tor like .

reduce: A processing pattern that traverses a sequence and accumulates the elements into
a single result.

map: A processing pattern that traverses a sequence and performs an operation on each
element.

filter: A processing pattern that traverses a list and selects the elements that satisfy some
criterion.

object: Something a variable can refer to. An object has a type and a value.

equivalent: Having the same value.

identical: Being the same object (which implies equivalence).

reference: The association between a variable and its value.

aliasing: A circumstance where two or more variables refer to the same object.

delimiter: A character or string used to indicate where a string should be split.

10.15 Exercises
You can download solutions to these exercises from

.
Exercise 10.1. Write a function called that takes a list of lists of integers and adds up
the elements from all of the nested lists. For example:

Exercise 10.2. Write a function called that takes a list of numbers and returns the cumu-
lative sum; that is, a new list where the ith element is the sum of the first i + 1 elements from the
original list. For example:

Exercise 10.3. Write a function called that takes a list and returns a new list that contains
all but the first and last elements. For example:

http://thinkpython2.com/code/list_exercises.py
http://thinkpython2.com/code/list_exercises.py

10.15. Exercises 101

Exercise 10.4. Write a function called that takes a list, modifies it by removing the first and
last elements, and returns . For example:

Exercise 10.5. Write a function called that takes a list as a parameter and returns
if the list is sorted in ascending order and otherwise. For example:

Exercise 10.6. Two words are anagrams if you can rearrange the letters from one to spell the other.
Write a function called that takes two strings and returns if they are anagrams.
Exercise 10.7. Write a function called that takes a list and returns if there
is any element that appears more than once. It should not modify the original list.
Exercise 10.8. This exercise pertains to the so-called Birthday Paradox, which you can read about
at .

If there are 23 students in your class, what are the chances that two of you have the same birthday?
You can estimate this probability by generating random samples of 23 birthdays and checking for
matches. Hint: you can generate random birthdays with the function in the
module.

You can download my solution from .
Exercise 10.9. Write a function that reads the file and builds a list with one element
per word. Write two versions of this function, one using the method and the other using
the idiom . Which one takes longer to run? Why?

Solution: .
Exercise 10.10. To check whether a word is in the word list, you could use the operator, but it
would be slow because it searches through the words in order.

Because the words are in alphabetical order, we can speed things up with a bisection search (also
known as binary search), which is similar to what you do when you look a word up in the dictionary.
You start in the middle and check to see whether the word you are looking for comes before the word
in the middle of the list. If so, you search the first half of the list the same way. Otherwise you search
the second half.

Either way, you cut the remaining search space in half. If the word list has 113,809 words, it will
take about 17 steps to find the word or conclude that it’s not there.

Write a function called that takes a sorted list and a target value and returns the index
of the value in the list if it’s there, or if it’s not.

Or you could read the documentation of the module and use that! Solution:
.

Exercise 10.11. Two words are a “reverse pair” if each is the reverse of the other. Write a program
that finds all the reverse pairs in the word list. Solution:

.
Exercise 10.12. Two words “interlock” if taking alternating letters from each forms a new
word. For example, “shoe” and “cold” interlock to form “schooled”. Solution:

http://en.wikipedia.org/wiki/Birthday_paradox
http://thinkpython2.com/code/birthday.py
http://thinkpython2.com/code/wordlist.py
http://thinkpython2.com/code/inlist.py
http://thinkpython2.com/code/inlist.py
http://thinkpython2.com/code/reverse_pair.py
http://thinkpython2.com/code/reverse_pair.py
http://thinkpython2.com/code/interlock.py
http://thinkpython2.com/code/interlock.py

102 Chapter 10. Lists

. Credit: This exercise is inspired by an example at
.

1. Write a program that finds all pairs of words that interlock. Hint: don’t enumerate all pairs!

2. Can you find any words that are three-way interlocked; that is, every third letter forms a
word, starting from the first, second or third?

http://thinkpython2.com/code/interlock.py
http://thinkpython2.com/code/interlock.py
http://puzzlers.org

Chapter 11

Dictionaries

This chapter presents another built-in type called a dictionary. Dictionaries are one of
Python’s best features; they are the building blocks of many efficient and elegant algo-
rithms.

11.1 A dictionary is a mapping

A dictionary is like a list, but more general. In a list, the indices have to be integers; in a
dictionary they can be (almost) any type.

A dictionary contains a collection of indices, which are called keys, and a collection of
values. Each key is associated with a single value. The association of a key and a value is
called a key-value pair or sometimes an item.

In mathematical language, a dictionary represents a mapping from keys to values, so you
can also say that each key “maps to” a value. As an example, we’ll build a dictionary that
maps from English to Spanish words, so the keys and the values are all strings.

The function creates a new dictionary with no items. Because is the name of a
built-in function, you should avoid using it as a variable name.

The squiggly-brackets, , represent an empty dictionary. To add items to the dictionary,
you can use square brackets:

This line creates an item that maps from the key to the value . If we print the
dictionary again, we see a key-value pair with a colon between the key and value:

This output format is also an input format. For example, you can create a new dictionary
with three items:

104 Chapter 11. Dictionaries

But if you print , you might be surprised:

The order of the key-value pairs might not be the same. If you type the same example
on your computer, you might get a different result. In general, the order of items in a
dictionary is unpredictable.

But that’s not a problem because the elements of a dictionary are never indexed with inte-
ger indices. Instead, you use the keys to look up the corresponding values:

The key always maps to the value so the order of the items doesn’t matter.

If the key isn’t in the dictionary, you get an exception:

The function works on dictionaries; it returns the number of key-value pairs:

The operator works on dictionaries, too; it tells you whether something appears as a key
in the dictionary (appearing as a value is not good enough).

To see whether something appears as a value in a dictionary, you can use the method
, which returns a collection of values, and then use the operator:

The operator uses different algorithms for lists and dictionaries. For lists, it searches the
elements of the list in order, as in Section 8.6. As the list gets longer, the search time gets
longer in direct proportion.

For dictionaries, Python uses an algorithm called a hashtable that has a remarkable prop-
erty: the operator takes about the same amount of time no matter how many items are
in the dictionary. I explain how that’s possible in Section B.4, but the explanation might
not make sense until you’ve read a few more chapters.

11.2 Dictionary as a collection of counters

Suppose you are given a string and you want to count how many times each letter appears.
There are several ways you could do it:

11.2. Dictionary as a collection of counters 105

1. You could create 26 variables, one for each letter of the alphabet. Then you could tra-
verse the string and, for each character, increment the corresponding counter, proba-
bly using a chained conditional.

2. You could create a list with 26 elements. Then you could convert each character to
a number (using the built-in function), use the number as an index into the list,
and increment the appropriate counter.

3. You could create a dictionary with characters as keys and counters as the correspond-
ing values. The first time you see a character, you would add an item to the dictionary.
After that you would increment the value of an existing item.

Each of these options performs the same computation, but each of them implements that
computation in a different way.

An implementation is a way of performing a computation; some implementations are
better than others. For example, an advantage of the dictionary implementation is that we
don’t have to know ahead of time which letters appear in the string and we only have to
make room for the letters that do appear.

Here is what the code might look like:

The name of the function is , which is a statistical term for a collection of counters
(or frequencies).

The first line of the function creates an empty dictionary. The loop traverses the string.
Each time through the loop, if the character is not in the dictionary, we create a new item
with key and the initial value 1 (since we have seen this letter once). If is already in the
dictionary we increment .

Here’s how it works:

The histogram indicates that the letters and appear once; appears twice, and
so on.

Dictionaries have a method called that takes a key and a default value. If the key
appears in the dictionary, returns the corresponding value; otherwise it returns the
default value. For example:

106 Chapter 11. Dictionaries

As an exercise, use to write more concisely. You should be able to eliminate
the statement.

11.3 Looping and dictionaries
If you use a dictionary in a statement, it traverses the keys of the dictionary. For exam-
ple, prints each key and the corresponding value:

Here’s what the output looks like:

Again, the keys are in no particular order. To traverse the keys in sorted order, you can use
the built-in function :

11.4 Reverse lookup
Given a dictionary and a key , it is easy to find the corresponding value . This
operation is called a lookup.

But what if you have and you want to find ? You have two problems: first, there might
be more than one key that maps to the value . Depending on the application, you might
be able to pick one, or you might have to make a list that contains all of them. Second,
there is no simple syntax to do a reverse lookup; you have to search.

Here is a function that takes a value and returns the first key that maps to that value:

11.5. Dictionaries and lists 107

This function is yet another example of the search pattern, but it uses a feature we haven’t
seen before, . The raise statement causes an exception; in this case it causes a

, which is a built-in exception used to indicate that a lookup operation failed.

If we get to the end of the loop, that means doesn’t appear in the dictionary as a value, so
we raise an exception.

Here is an example of a successful reverse lookup:

And an unsuccessful one:

The effect when you raise an exception is the same as when Python raises one: it prints a
traceback and an error message.

The statement can take a detailed error message as an optional argument. For exam-
ple:

A reverse lookup is much slower than a forward lookup; if you have to do it often, or if the
dictionary gets big, the performance of your program will suffer.

11.5 Dictionaries and lists

Lists can appear as values in a dictionary. For example, if you are given a dictionary that
maps from letters to frequencies, you might want to invert it; that is, create a dictionary
that maps from frequencies to letters. Since there might be several letters with the same
frequency, each value in the inverted dictionary should be a list of letters.

Here is a function that inverts a dictionary:

108 Chapter 11. Dictionaries

’a’ 1

1

dict

hist

’p’

1

’o’ 1

’r’ 2

’t’

0

1

’a’

’p’

list

2 ’t’

’o’3

1

dict

inv

2 0

list

’r’

Figure 11.1: State diagram.

Each time through the loop, gets a key from and gets the corresponding value.
If is not in , that means we haven’t seen it before, so we create a new item and
initialize it with a singleton (a list that contains a single element). Otherwise we have seen
this value before, so we append the corresponding key to the list.

Here is an example:

Figure 11.1 is a state diagram showing and . A dictionary is represented as a
box with the type above it and the key-value pairs inside. If the values are integers,
floats or strings, I draw them inside the box, but I usually draw lists outside the box, just
to keep the diagram simple.

Lists can be values in a dictionary, as this example shows, but they cannot be keys. Here’s
what happens if you try:

I mentioned earlier that a dictionary is implemented using a hashtable and that means that
the keys have to be hashable.

A hash is a function that takes a value (of any kind) and returns an integer. Dictionaries
use these integers, called hash values, to store and look up key-value pairs.

This system works fine if the keys are immutable. But if the keys are mutable, like lists,
bad things happen. For example, when you create a key-value pair, Python hashes the key
and stores it in the corresponding location. If you modify the key and then hash it again, it
would go to a different location. In that case you might have two entries for the same key,
or you might not be able to find a key. Either way, the dictionary wouldn’t work correctly.

That’s why keys have to be hashable, and why mutable types like lists aren’t. The simplest
way to get around this limitation is to use tuples, which we will see in the next chapter.

11.6. Memos 109

fibonacci

n 4

fibonacci

n 3

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

fibonacci

n 1

fibonacci

n 2

fibonacci

n 0

fibonacci

n 1

Figure 11.2: Call graph.

Since dictionaries are mutable, they can’t be used as keys, but they can be used as values.

11.6 Memos

If you played with the function from Section 6.7, you might have noticed that
the bigger the argument you provide, the longer the function takes to run. Furthermore,
the run time increases quickly.

To understand why, consider Figure 11.2, which shows the call graph for with
:

A call graph shows a set of function frames, with lines connecting each frame to the frames
of the functions it calls. At the top of the graph, with calls with

and . In turn, with calls with and . And so on.

Count how many times and are called. This is an inefficient
solution to the problem, and it gets worse as the argument gets bigger.

One solution is to keep track of values that have already been computed by storing them
in a dictionary. A previously computed value that is stored for later use is called a memo.
Here is a “memoized” version of :

is a dictionary that keeps track of the Fibonacci numbers we already know. It starts
with two items: 0 maps to 0 and 1 maps to 1.

110 Chapter 11. Dictionaries

Whenever is called, it checks . If the result is already there, it can return
immediately. Otherwise it has to compute the new value, add it to the dictionary, and
return it.

If you run this version of and compare it with the original, you will find that it
is much faster.

11.7 Global variables
In the previous example, is created outside the function, so it belongs to the special
frame called . Variables in are sometimes called global because they
can be accessed from any function. Unlike local variables, which disappear when their
function ends, global variables persist from one function call to the next.

It is common to use global variables for flags; that is, boolean variables that indicate (“flag”)
whether a condition is true. For example, some programs use a flag named to
control the level of detail in the output:

If you try to reassign a global variable, you might be surprised. The following example is
supposed to keep track of whether the function has been called:

But if you run it you will see that the value of doesn’t change. The problem
is that creates a new local variable named . The local variable goes
away when the function ends, and has no effect on the global variable.

To reassign a global variable inside a function you have to declare the global variable before
you use it:

The global statement tells the interpreter something like, “In this function, when I say
, I mean the global variable; don’t create a local one.”

Here’s an example that tries to update a global variable:

If you run it you get:

11.8. Debugging 111

Python assumes that is local, and under that assumption you are reading it before
writing it. The solution, again, is to declare global.

If a global variable refers to a mutable value, you can modify the value without declaring
the variable:

So you can add, remove and replace elements of a global list or dictionary, but if you want
to reassign the variable, you have to declare it:

Global variables can be useful, but if you have a lot of them, and you modify them fre-
quently, they can make programs hard to debug.

11.8 Debugging

As you work with bigger datasets it can become unwieldy to debug by printing and check-
ing the output by hand. Here are some suggestions for debugging large datasets:

Scale down the input: If possible, reduce the size of the dataset. For example if the pro-
gram reads a text file, start with just the first 10 lines, or with the smallest example
you can find. You can either edit the files themselves, or (better) modify the program
so it reads only the first lines.

If there is an error, you can reduce to the smallest value that manifests the error, and
then increase it gradually as you find and correct errors.

Check summaries and types: Instead of printing and checking the entire dataset, consider
printing summaries of the data: for example, the number of items in a dictionary or
the total of a list of numbers.

A common cause of runtime errors is a value that is not the right type. For debugging
this kind of error, it is often enough to print the type of a value.

Write self-checks: Sometimes you can write code to check for errors automatically. For
example, if you are computing the average of a list of numbers, you could check that
the result is not greater than the largest element in the list or less than the smallest.
This is called a “sanity check” because it detects results that are “insane”.

Another kind of check compares the results of two different computations to see if
they are consistent. This is called a “consistency check”.

112 Chapter 11. Dictionaries

Format the output: Formatting debugging output can make it easier to spot an error. We
saw an example in Section 6.9. Another tool you might find useful is the mod-
ule, which provides a function that displays built-in types in a more human-
readable format (stands for “pretty print”).

Again, time you spend building scaffolding can reduce the time you spend debugging.

11.9 Glossary
mapping: A relationship in which each element of one set corresponds to an element of

another set.

dictionary: A mapping from keys to their corresponding values.

key-value pair: The representation of the mapping from a key to a value.

item: In a dictionary, another name for a key-value pair.

key: An object that appears in a dictionary as the first part of a key-value pair.

value: An object that appears in a dictionary as the second part of a key-value pair. This is
more specific than our previous use of the word “value”.

implementation: A way of performing a computation.

hashtable: The algorithm used to implement Python dictionaries.

hash function: A function used by a hashtable to compute the location for a key.

hashable: A type that has a hash function. Immutable types like integers, floats and strings
are hashable; mutable types like lists and dictionaries are not.

lookup: A dictionary operation that takes a key and finds the corresponding value.

reverse lookup: A dictionary operation that takes a value and finds one or more keys that
map to it.

raise statement: A statement that (deliberately) raises an exception.

singleton: A list (or other sequence) with a single element.

call graph: A diagram that shows every frame created during the execution of a program,
with an arrow from each caller to each callee.

memo: A computed value stored to avoid unnecessary future computation.

global variable: A variable defined outside a function. Global variables can be accessed
from any function.

global statement: A statement that declares a variable name global.

flag: A boolean variable used to indicate whether a condition is true.

declaration: A statement like that tells the interpreter something about a variable.

11.10. Exercises 113

11.10 Exercises
Exercise 11.1. Write a function that reads the words in and stores them as keys in a
dictionary. It doesn’t matter what the values are. Then you can use the operator as a fast way to
check whether a string is in the dictionary.

If you did Exercise 10.10, you can compare the speed of this implementation with the list operator
and the bisection search.
Exercise 11.2. Read the documentation of the dictionary method and use it to write a
more concise version of . Solution:

.
Exercise 11.3. Memoize the Ackermann function from Exercise 6.2 and see if memoization
makes it possible to evaluate the function with bigger arguments. Hint: no. Solution:

.
Exercise 11.4. If you did Exercise 10.7, you already have a function named that
takes a list as a parameter and returns if there is any object that appears more than once in the
list.

Use a dictionary to write a faster, simpler version of . Solution:
.

Exercise 11.5. Two words are “rotate pairs” if you can rotate one of them and get the other (see
in Exercise 8.5).

Write a program that reads a wordlist and finds all the rotate pairs. Solution:
.

Exercise 11.6. Here’s another Puzzler from Car Talk (
):

This was sent in by a fellow named Dan O’Leary. He came upon a common one-syllable,
five-letter word recently that has the following unique property. When you remove the
first letter, the remaining letters form a homophone of the original word, that is a word
that sounds exactly the same. Replace the first letter, that is, put it back and remove
the second letter and the result is yet another homophone of the original word. And the
question is, what’s the word?
Now I’m going to give you an example that doesn’t work. Let’s look at the five-letter
word, ‘wrack.’ W-R-A-C-K, you know like to ‘wrack with pain.’ If I remove the first
letter, I am left with a four-letter word, ’R-A-C-K.’ As in, ‘Holy cow, did you see the
rack on that buck! It must have been a nine-pointer!’ It’s a perfect homophone. If you
put the ‘w’ back, and remove the ‘r,’ instead, you’re left with the word, ‘wack,’ which is
a real word, it’s just not a homophone of the other two words.
But there is, however, at least one word that Dan and we know of, which will yield two
homophones if you remove either of the first two letters to make two, new four-letter
words. The question is, what’s the word?

You can use the dictionary from Exercise 11.1 to check whether a string is in the word list.

To check whether two words are homophones, you can use the CMU Pronouncing Dictionary. You
can download it from or from

and you can also download
, which provides a function named that reads the

pronouncing dictionary and returns a Python dictionary that maps from each word to a string that
describes its primary pronunciation.

http://thinkpython2.com/code/invert_dict.py
http://thinkpython2.com/code/invert_dict.py
http://thinkpython2.com/code/ackermann_memo.py
http://thinkpython2.com/code/ackermann_memo.py
http://thinkpython2.com/code/has_duplicates.py
http://thinkpython2.com/code/has_duplicates.py
http://thinkpython2.com/code/rotate_pairs.py
http://thinkpython2.com/code/rotate_pairs.py
http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers
http://www.speech.cs.cmu.edu/cgi-bin/cmudict
http://thinkpython2.com/code/c06d
http://thinkpython2.com/code/c06d
http://thinkpython2.com/code/pronounce.py
http://thinkpython2.com/code/pronounce.py

114 Chapter 11. Dictionaries

Write a program that lists all the words that solve the Puzzler. Solution:
.

http://thinkpython2.com/code/homophone.py
http://thinkpython2.com/code/homophone.py

Chapter 12

Tuples

This chapter presents one more built-in type, the tuple, and then shows how lists, dictionar-
ies, and tuples work together. I also present a useful feature for variable-length argument
lists, the gather and scatter operators.

One note: there is no consensus on how to pronounce “tuple”. Some people say “tuh-
ple”, which rhymes with “supple”. But in the context of programming, most people say
“too-ple”, which rhymes with “quadruple”.

12.1 Tuples are immutable
A tuple is a sequence of values. The values can be any type, and they are indexed by
integers, so in that respect tuples are a lot like lists. The important difference is that tuples
are immutable.

Syntactically, a tuple is a comma-separated list of values:

Although it is not necessary, it is common to enclose tuples in parentheses:

To create a tuple with a single element, you have to include a final comma:

A value in parentheses is not a tuple:

Another way to create a tuple is the built-in function . With no argument, it creates
an empty tuple:

116 Chapter 12. Tuples

If the argument is a sequence (string, list or tuple), the result is a tuple with the elements of
the sequence:

Because is the name of a built-in function, you should avoid using it as a variable
name.

Most list operators also work on tuples. The bracket operator indexes an element:

And the slice operator selects a range of elements.

But if you try to modify one of the elements of the tuple, you get an error:

Because tuples are immutable, you can’t modify the elements. But you can replace one
tuple with another:

This statement makes a new tuple and then makes refer to it.

The relational operators work with tuples and other sequences; Python starts by comparing
the first element from each sequence. If they are equal, it goes on to the next elements, and
so on, until it finds elements that differ. Subsequent elements are not considered (even if
they are really big).

12.2 Tuple assignment

It is often useful to swap the values of two variables. With conventional assignments, you
have to use a temporary variable. For example, to swap and :

This solution is cumbersome; tuple assignment is more elegant:

12.3. Tuples as return values 117

The left side is a tuple of variables; the right side is a tuple of expressions. Each value
is assigned to its respective variable. All the expressions on the right side are evaluated
before any of the assignments.

The number of variables on the left and the number of values on the right have to be the
same:

More generally, the right side can be any kind of sequence (string, list or tuple). For exam-
ple, to split an email address into a user name and a domain, you could write:

The return value from is a list with two elements; the first element is assigned to
, the second to .

12.3 Tuples as return values

Strictly speaking, a function can only return one value, but if the value is a tuple, the effect
is the same as returning multiple values. For example, if you want to divide two integers
and compute the quotient and remainder, it is inefficient to compute and then . It
is better to compute them both at the same time.

The built-in function takes two arguments and returns a tuple of two values, the
quotient and remainder. You can store the result as a tuple:

Or use tuple assignment to store the elements separately:

Here is an example of a function that returns a tuple:

and are built-in functions that find the largest and smallest elements of a sequence.
computes both and returns a tuple of two values.

118 Chapter 12. Tuples

12.4 Variable-length argument tuples

Functions can take a variable number of arguments. A parameter name that begins with
gathers arguments into a tuple. For example, takes any number of arguments

and prints them:

The gather parameter can have any name you like, but is conventional. Here’s how
the function works:

The complement of gather is scatter. If you have a sequence of values and you want to pass
it to a function as multiple arguments, you can use the operator. For example,
takes exactly two arguments; it doesn’t work with a tuple:

But if you scatter the tuple, it works:

Many of the built-in functions use variable-length argument tuples. For example, and
can take any number of arguments:

But does not.

As an exercise, write a function called that takes any number of arguments and
returns their sum.

12.5 Lists and tuples

is a built-in function that takes two or more sequences and returns a list of tuples where
each tuple contains one element from each sequence. The name of the function refers to a
zipper, which joins and interleaves two rows of teeth.

This example zips a string and a list:

The result is a zip object that knows how to iterate through the pairs. The most common
use of is in a loop:

12.5. Lists and tuples 119

A zip object is a kind of iterator, which is any object that iterates through a sequence.
Iterators are similar to lists in some ways, but unlike lists, you can’t use an index to select
an element from an iterator.

If you want to use list operators and methods, you can use a zip object to make a list:

The result is a list of tuples; in this example, each tuple contains a character from the string
and the corresponding element from the list.

If the sequences are not the same length, the result has the length of the shorter one.

You can use tuple assignment in a loop to traverse a list of tuples:

Each time through the loop, Python selects the next tuple in the list and assigns the ele-
ments to and . The output of this loop is:

If you combine , and tuple assignment, you get a useful idiom for traversing two
(or more) sequences at the same time. For example, takes two sequences,
and , and returns if there is an index such that :

If you need to traverse the elements of a sequence and their indices, you can use the built-in
function :

The result from is an enumerate object, which iterates a sequence of pairs; each
pair contains an index (starting from 0) and an element from the given sequence. In this
example, the output is

Again.

120 Chapter 12. Tuples

12.6 Dictionaries and tuples
Dictionaries have a method called that returns a sequence of tuples, where each
tuple is a key-value pair.

The result is a object, which is an iterator that iterates the key-value pairs. You
can use it in a loop like this:

As you should expect from a dictionary, the items are in no particular order.

Going in the other direction, you can use a list of tuples to initialize a new dictionary:

Combining with yields a concise way to create a dictionary:

The dictionary method also takes a list of tuples and adds them, as key-value pairs,
to an existing dictionary.

It is common to use tuples as keys in dictionaries (primarily because you can’t use lists). For
example, a telephone directory might map from last-name, first-name pairs to telephone
numbers. Assuming that we have defined , and , we could write:

The expression in brackets is a tuple. We could use tuple assignment to traverse this dic-
tionary.

This loop traverses the keys in , which are tuples. It assigns the elements of each
tuple to and , then prints the name and corresponding telephone number.

There are two ways to represent tuples in a state diagram. The more detailed version
shows the indices and elements just as they appear in a list. For example, the tuple

would appear as in Figure 12.1.

But in a larger diagram you might want to leave out the details. For example, a diagram of
the telephone directory might appear as in Figure 12.2.

Here the tuples are shown using Python syntax as a graphical shorthand. The telephone
number in the diagram is the complaints line for the BBC, so please don’t call it.

12.7. Sequences of sequences 121

0

1

’Cleese’

’John’

tuple

Figure 12.1: State diagram.

(’Cleese’, ’John’) ’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

’08700 100 222’

(’Chapman’, ’Graham’)

(’Idle’, ’Eric’)

(’Jones’, ’Terry’)

(’Gilliam’, ’Terry’)

(’Palin’, ’Michael’) ’08700 100 222’

dict

Figure 12.2: State diagram.

12.7 Sequences of sequences

I have focused on lists of tuples, but almost all of the examples in this chapter also work
with lists of lists, tuples of tuples, and tuples of lists. To avoid enumerating the possible
combinations, it is sometimes easier to talk about sequences of sequences.

In many contexts, the different kinds of sequences (strings, lists and tuples) can be used
interchangeably. So how should you choose one over the others?

To start with the obvious, strings are more limited than other sequences because the ele-
ments have to be characters. They are also immutable. If you need the ability to change the
characters in a string (as opposed to creating a new string), you might want to use a list of
characters instead.

Lists are more common than tuples, mostly because they are mutable. But there are a few
cases where you might prefer tuples:

1. In some contexts, like a statement, it is syntactically simpler to create a tuple
than a list.

2. If you want to use a sequence as a dictionary key, you have to use an immutable type
like a tuple or string.

3. If you are passing a sequence as an argument to a function, using tuples reduces the
potential for unexpected behavior due to aliasing.

Because tuples are immutable, they don’t provide methods like and , which
modify existing lists. But Python provides the built-in function , which takes any
sequence and returns a new list with the same elements in sorted order, and ,
which takes a sequence and returns an iterator that traverses the list in reverse order.

122 Chapter 12. Tuples

12.8 Debugging

Lists, dictionaries and tuples are examples of data structures; in this chapter we are starting
to see compound data structures, like lists of tuples, or dictionaries that contain tuples as
keys and lists as values. Compound data structures are useful, but they are prone to what
I call shape errors; that is, errors caused when a data structure has the wrong type, size, or
structure. For example, if you are expecting a list with one integer and I give you a plain
old integer (not in a list), it won’t work.

To help debug these kinds of errors, I have written a module called that
provides a function, also called , that takes any kind of data structure as
an argument and returns a string that summarizes its shape. You can download it from

Here’s the result for a simple list:

A fancier program might write “list of 3 ints”, but it was easier not to deal with plurals.
Here’s a list of lists:

If the elements of the list are not the same type, groups them, in order, by
type:

Here’s a list of tuples:

And here’s a dictionary with 3 items that map integers to strings.

If you are having trouble keeping track of your data structures, can help.

12.9 Glossary
tuple: An immutable sequence of elements.

tuple assignment: An assignment with a sequence on the right side and a tuple of vari-
ables on the left. The right side is evaluated and then its elements are assigned to the
variables on the left.

http://thinkpython2.com/code/structshape.py

12.10. Exercises 123

gather: The operation of assembling a variable-length argument tuple.

scatter: The operation of treating a sequence as a list of arguments.

zip object: The result of calling a built-in function ; an object that iterates through a
sequence of tuples.

iterator: An object that can iterate through a sequence, but which does not provide list
operators and methods.

data structure: A collection of related values, often organized in lists, dictionaries, tuples,
etc.

shape error: An error caused because a value has the wrong shape; that is, the wrong type
or size.

12.10 Exercises

Exercise 12.1. Write a function called that takes a string and prints the let-
ters in decreasing order of frequency. Find text samples from several different languages and see
how letter frequency varies between languages. Compare your results with the tables at

. Solution:
.

Exercise 12.2. More anagrams!

1. Write a program that reads a word list from a file (see Section 9.1) and prints all the sets of
words that are anagrams.

Here is an example of what the output might look like:

Hint: you might want to build a dictionary that maps from a collection of letters to a list
of words that can be spelled with those letters. The question is, how can you represent the
collection of letters in a way that can be used as a key?

2. Modify the previous program so that it prints the longest list of anagrams first, followed by
the second longest, and so on.

3. In Scrabble a “bingo” is when you play all seven tiles in your rack, along with a letter on
the board, to form an eight-letter word. What collection of 8 letters forms the most possible
bingos? Hint: there are seven.

Solution: .

Exercise 12.3. Two words form a “metathesis pair” if you can transform one into the other by
swapping two letters; for example, “converse” and “conserve”. Write a program that finds all of
the metathesis pairs in the dictionary. Hint: don’t test all pairs of words, and don’t test all possible
swaps. Solution: . Credit: This exercise
is inspired by an example at .

http://en.wikipedia.org/wiki/Letter_frequencies
http://en.wikipedia.org/wiki/Letter_frequencies
http://thinkpython2.com/code/most_frequent.py
http://thinkpython2.com/code/most_frequent.py
http://thinkpython2.com/code/anagram_sets.py
http://thinkpython2.com/code/metathesis.py
http://puzzlers.org

124 Chapter 12. Tuples

Exercise 12.4. Here’s another Car Talk Puzzler (
):

What is the longest English word, that remains a valid English word, as you remove its
letters one at a time?
Now, letters can be removed from either end, or the middle, but you can’t rearrange any
of the letters. Every time you drop a letter, you wind up with another English word. If
you do that, you’re eventually going to wind up with one letter and that too is going
to be an English word—one that’s found in the dictionary. I want to know what’s the
longest word and how many letters does it have?
I’m going to give you a little modest example: Sprite. Ok? You start off with sprite,
you take a letter off, one from the interior of the word, take the r away, and we’re left
with the word spite, then we take the e off the end, we’re left with spit, we take the s off,
we’re left with pit, it, and I.

Write a program to find all words that can be reduced in this way, and then find the longest one.

This exercise is a little more challenging than most, so here are some suggestions:

1. You might want to write a function that takes a word and computes a list of all the words that
can be formed by removing one letter. These are the “children” of the word.

2. Recursively, a word is reducible if any of its children are reducible. As a base case, you can
consider the empty string reducible.

3. The wordlist I provided, , doesn’t contain single letter words. So you might want
to add “I”, “a”, and the empty string.

4. To improve the performance of your program, you might want to memoize the words that are
known to be reducible.

Solution: .

http://www.cartalk.com/content/puzzlers
http://www.cartalk.com/content/puzzlers
http://thinkpython2.com/code/reducible.py

Chapter 13

Case study: data structure
selection

At this point you have learned about Python’s core data structures, and you have seen
some of the algorithms that use them. If you would like to know more about algorithms,
this might be a good time to read Chapter B. But you don’t have to read it before you go
on; you can read it whenever you are interested.

This chapter presents a case study with exercises that let you think about choosing data
structures and practice using them.

13.1 Word frequency analysis
As usual, you should at least attempt the exercises before you read my solutions.
Exercise 13.1. Write a program that reads a file, breaks each line into words, strips whitespace and
punctuation from the words, and converts them to lowercase.

Hint: The module provides a string named , which contains space, tab, new-
line, etc., and which contains the punctuation characters. Let’s see if we can make
Python swear:

Also, you might consider using the string methods , and .
Exercise 13.2. Go to Project Gutenberg () and download your favorite
out-of-copyright book in plain text format.

Modify your program from the previous exercise to read the book you downloaded, skip over the
header information at the beginning of the file, and process the rest of the words as before.

Then modify the program to count the total number of words in the book, and the number of times
each word is used.

Print the number of different words used in the book. Compare different books by different authors,
written in different eras. Which author uses the most extensive vocabulary?

http://gutenberg.org

126 Chapter 13. Case study: data structure selection

Exercise 13.3. Modify the program from the previous exercise to print the 20 most frequently used
words in the book.
Exercise 13.4. Modify the previous program to read a word list (see Section 9.1) and then print all
the words in the book that are not in the word list. How many of them are typos? How many of
them are common words that should be in the word list, and how many of them are really obscure?

13.2 Random numbers

Given the same inputs, most computer programs generate the same outputs every time,
so they are said to be deterministic. Determinism is usually a good thing, since we expect
the same calculation to yield the same result. For some applications, though, we want the
computer to be unpredictable. Games are an obvious example, but there are more.

Making a program truly nondeterministic turns out to be difficult, but there are ways to
make it at least seem nondeterministic. One of them is to use algorithms that generate
pseudorandom numbers. Pseudorandom numbers are not truly random because they are
generated by a deterministic computation, but just by looking at the numbers it is all but
impossible to distinguish them from random.

The module provides functions that generate pseudorandom numbers (which I
will simply call “random” from here on).

The function returns a random float between 0.0 and 1.0 (including 0.0 but not 1.0).
Each time you call , you get the next number in a long series. To see a sample, run
this loop:

The function takes parameters and and returns an integer between
and (including both).

To choose an element from a sequence at random, you can use :

The module also provides functions to generate random values from continuous
distributions including Gaussian, exponential, gamma, and a few more.
Exercise 13.5. Write a function named that takes a histogram as defined in
Section 11.2 and returns a random value from the histogram, chosen with probability in proportion
to frequency. For example, for this histogram:

13.3. Word histogram 127

your function should return with probability 2/3 and with probability 1/3.

13.3 Word histogram

You should attempt the previous exercises before you go on. You can download my
solution from . You will also need

.

Here is a program that reads a file and builds a histogram of the words in the file:

This program reads , which contains the text of Emma by Jane Austen.

loops through the lines of the file, passing them one at a time to
. The histogram is being used as an accumulator.

uses the string method to replace hyphens with spaces before using
to break the line into a list of strings. It traverses the list of words and uses

and to remove punctuation and convert to lower case. (It is a shorthand to say that
strings are “converted”; remember that strings are immutable, so methods like and

return new strings.)

Finally, updates the histogram by creating a new item or incrementing an
existing one.

To count the total number of words in the file, we can add up the frequencies in the his-
togram:

http://thinkpython2.com/code/analyze_book1.py
http://thinkpython2.com/code/emma.txt

128 Chapter 13. Case study: data structure selection

The number of different words is just the number of items in the dictionary:

Here is some code to print the results:

And the results:

13.4 Most common words

To find the most common words, we can make a list of tuples, where each tuple contains a
word and its frequency, and sort it.

The following function takes a histogram and returns a list of word-frequency tuples:

In each tuple, the frequency appears first, so the resulting list is sorted by frequency. Here
is a loop that prints the ten most common words:

I use the keyword argument to tell to use a tab character as a “separator”, rather
than a space, so the second column is lined up. Here are the results from Emma:

This code can be simplified using the parameter of the function. If you are curi-
ous, you can read about it at .

https://wiki.python.org/moin/HowTo/Sorting

13.5. Optional parameters 129

13.5 Optional parameters

We have seen built-in functions and methods that take optional arguments. It is possible
to write programmer-defined functions with optional arguments, too. For example, here is
a function that prints the most common words in a histogram

The first parameter is required; the second is optional. The default value of is 10.

If you only provide one argument:

gets the default value. If you provide two arguments:

gets the value of the argument instead. In other words, the optional argument over-
rides the default value.

If a function has both required and optional parameters, all the required parameters have
to come first, followed by the optional ones.

13.6 Dictionary subtraction

Finding the words from the book that are not in the word list from is a problem
you might recognize as set subtraction; that is, we want to find all the words from one set
(the words in the book) that are not in the other (the words in the list).

takes dictionaries and and returns a new dictionary that contains all the
keys from that are not in . Since we don’t really care about the values, we set them all
to None.

To find the words in the book that are not in , we can use to build
a histogram for , and then subtract:

Here are some of the results from Emma:

130 Chapter 13. Case study: data structure selection

Some of these words are names and possessives. Others, like “rencontre”, are no longer in
common use. But a few are common words that should really be in the list!
Exercise 13.6. Python provides a data structure called that provides many common set
operations. You can read about them in Section 19.5, or read the documentation at

.

Write a program that uses set subtraction to find words in the book that are not in the word list.
Solution: .

13.7 Random words

To choose a random word from the histogram, the simplest algorithm is to build a list with
multiple copies of each word, according to the observed frequency, and then choose from
the list:

The expression creates a list with copies of the string . The
method is similar to except that the argument is a sequence.

This algorithm works, but it is not very efficient; each time you choose a random word, it
rebuilds the list, which is as big as the original book. An obvious improvement is to build
the list once and then make multiple selections, but the list is still big.

An alternative is:

1. Use to get a list of the words in the book.

2. Build a list that contains the cumulative sum of the word frequencies (see Exer-
cise 10.2). The last item in this list is the total number of words in the book, n.

3. Choose a random number from 1 to n. Use a bisection search (See Exercise 10.10) to
find the index where the random number would be inserted in the cumulative sum.

4. Use the index to find the corresponding word in the word list.

Exercise 13.7. Write a program that uses this algorithm to choose a random word from the book.
Solution: .

13.8 Markov analysis

If you choose words from the book at random, you can get a sense of the vocabulary, but
you probably won’t get a sentence:

http://docs.python.org/3/library/stdtypes.html#types-set
http://docs.python.org/3/library/stdtypes.html#types-set
http://thinkpython2.com/code/analyze_book2.py
http://thinkpython2.com/code/analyze_book3.py

13.8. Markov analysis 131

A series of random words seldom makes sense because there is no relationship between
successive words. For example, in a real sentence you would expect an article like “the” to
be followed by an adjective or a noun, and probably not a verb or adverb.

One way to measure these kinds of relationships is Markov analysis, which characterizes,
for a given sequence of words, the probability of the words that might come next. For
example, the song Eric, the Half a Bee begins:

Half a bee, philosophically,
Must, ipso facto, half not be.
But half the bee has got to be
Vis a vis, its entity. D’you see?

But can a bee be said to be
Or not to be an entire bee
When half the bee is not a bee
Due to some ancient injury?

In this text, the phrase “half the” is always followed by the word “bee”, but the phrase “the
bee” might be followed by either “has” or “is”.

The result of Markov analysis is a mapping from each prefix (like “half the” and “the bee”)
to all possible suffixes (like “has” and “is”).

Given this mapping, you can generate a random text by starting with any prefix and choos-
ing at random from the possible suffixes. Next, you can combine the end of the prefix and
the new suffix to form the next prefix, and repeat.

For example, if you start with the prefix “Half a”, then the next word has to be “bee”,
because the prefix only appears once in the text. The next prefix is “a bee”, so the next
suffix might be “philosophically”, “be” or “due”.

In this example the length of the prefix is always two, but you can do Markov analysis with
any prefix length.
Exercise 13.8. Markov analysis:

1. Write a program to read a text from a file and perform Markov analysis. The result should be
a dictionary that maps from prefixes to a collection of possible suffixes. The collection might
be a list, tuple, or dictionary; it is up to you to make an appropriate choice. You can test your
program with prefix length two, but you should write the program in a way that makes it easy
to try other lengths.

2. Add a function to the previous program to generate random text based on the Markov analysis.
Here is an example from Emma with prefix length 2:

He was very clever, be it sweetness or be angry, ashamed or only amused, at such
a stroke. She had never thought of Hannah till you were never meant for me?" "I
cannot make speeches, Emma:" he soon cut it all himself.

For this example, I left the punctuation attached to the words. The result is almost syntacti-
cally correct, but not quite. Semantically, it almost makes sense, but not quite.
What happens if you increase the prefix length? Does the random text make more sense?

132 Chapter 13. Case study: data structure selection

3. Once your program is working, you might want to try a mash-up: if you combine text from
two or more books, the random text you generate will blend the vocabulary and phrases from
the sources in interesting ways.

Credit: This case study is based on an example from Kernighan and Pike, The Practice of Pro-
gramming, Addison-Wesley, 1999.

You should attempt this exercise before you go on; then you can can download my
solution from . You will also need

.

13.9 Data structures
Using Markov analysis to generate random text is fun, but there is also a point to this
exercise: data structure selection. In your solution to the previous exercises, you had to
choose:

• How to represent the prefixes.

• How to represent the collection of possible suffixes.

• How to represent the mapping from each prefix to the collection of possible suffixes.

The last one is easy: a dictionary is the obvious choice for a mapping from keys to corre-
sponding values.

For the prefixes, the most obvious options are string, list of strings, or tuple of strings.

For the suffixes, one option is a list; another is a histogram (dictionary).

How should you choose? The first step is to think about the operations you will need to
implement for each data structure. For the prefixes, we need to be able to remove words
from the beginning and add to the end. For example, if the current prefix is “Half a”, and
the next word is “bee”, you need to be able to form the next prefix, “a bee”.

Your first choice might be a list, since it is easy to add and remove elements, but we also
need to be able to use the prefixes as keys in a dictionary, so that rules out lists. With tuples,
you can’t append or remove, but you can use the addition operator to form a new tuple:

takes a tuple of words, , and a string, , and forms a new tuple that has
all the words in except the first, and added to the end.

For the collection of suffixes, the operations we need to perform include adding a new
suffix (or increasing the frequency of an existing one), and choosing a random suffix.

Adding a new suffix is equally easy for the list implementation or the histogram. Choosing
a random element from a list is easy; choosing from a histogram is harder to do efficiently
(see Exercise 13.7).

So far we have been talking mostly about ease of implementation, but there are other fac-
tors to consider in choosing data structures. One is run time. Sometimes there is a theoreti-
cal reason to expect one data structure to be faster than other; for example, I mentioned that

http://thinkpython2.com/code/markov.py
http://thinkpython2.com/code/emma.txt
http://thinkpython2.com/code/emma.txt

13.10. Debugging 133

the operator is faster for dictionaries than for lists, at least when the number of elements
is large.

But often you don’t know ahead of time which implementation will be faster. One option is
to implement both of them and see which is better. This approach is called benchmarking.
A practical alternative is to choose the data structure that is easiest to implement, and then
see if it is fast enough for the intended application. If so, there is no need to go on. If not,
there are tools, like the module, that can identify the places in a program that take
the most time.

The other factor to consider is storage space. For example, using a histogram for the col-
lection of suffixes might take less space because you only have to store each word once, no
matter how many times it appears in the text. In some cases, saving space can also make
your program run faster, and in the extreme, your program might not run at all if you run
out of memory. But for many applications, space is a secondary consideration after run
time.

One final thought: in this discussion, I have implied that we should use one data structure
for both analysis and generation. But since these are separate phases, it would also be pos-
sible to use one structure for analysis and then convert to another structure for generation.
This would be a net win if the time saved during generation exceeded the time spent in
conversion.

13.10 Debugging

When you are debugging a program, and especially if you are working on a hard bug,
there are five things to try:

Reading: Examine your code, read it back to yourself, and check that it says what you
meant to say.

Running: Experiment by making changes and running different versions. Often if you
display the right thing at the right place in the program, the problem becomes obvi-
ous, but sometimes you have to build scaffolding.

Ruminating: Take some time to think! What kind of error is it: syntax, runtime, or seman-
tic? What information can you get from the error messages, or from the output of the
program? What kind of error could cause the problem you’re seeing? What did you
change last, before the problem appeared?

Rubberducking: If you explain the problem to someone else, you sometimes find the
answer before you finish asking the question. Often you don’t need the other
person; you could just talk to a rubber duck. And that’s the origin of the well-
known strategy called rubber duck debugging. I am not making this up; see

.

Retreating: At some point, the best thing to do is back off, undoing recent changes, until
you get back to a program that works and that you understand. Then you can start
rebuilding.

https://en.wikipedia.org/wiki/Rubber_duck_debugging

134 Chapter 13. Case study: data structure selection

Beginning programmers sometimes get stuck on one of these activities and forget the oth-
ers. Each activity comes with its own failure mode.

For example, reading your code might help if the problem is a typographical error, but
not if the problem is a conceptual misunderstanding. If you don’t understand what your
program does, you can read it 100 times and never see the error, because the error is in
your head.

Running experiments can help, especially if you run small, simple tests. But if you run
experiments without thinking or reading your code, you might fall into a pattern I call
“random walk programming”, which is the process of making random changes until the
program does the right thing. Needless to say, random walk programming can take a long
time.

You have to take time to think. Debugging is like an experimental science. You should have
at least one hypothesis about what the problem is. If there are two or more possibilities, try
to think of a test that would eliminate one of them.

But even the best debugging techniques will fail if there are too many errors, or if the code
you are trying to fix is too big and complicated. Sometimes the best option is to retreat,
simplifying the program until you get to something that works and that you understand.

Beginning programmers are often reluctant to retreat because they can’t stand to delete a
line of code (even if it’s wrong). If it makes you feel better, copy your program into another
file before you start stripping it down. Then you can copy the pieces back one at a time.

Finding a hard bug requires reading, running, ruminating, and sometimes retreating. If
you get stuck on one of these activities, try the others.

13.11 Glossary
deterministic: Pertaining to a program that does the same thing each time it runs, given

the same inputs.

pseudorandom: Pertaining to a sequence of numbers that appears to be random, but is
generated by a deterministic program.

default value: The value given to an optional parameter if no argument is provided.

override: To replace a default value with an argument.

benchmarking: The process of choosing between data structures by implementing alter-
natives and testing them on a sample of the possible inputs.

rubber duck debugging: Debugging by explaining your problem to an inanimate object
such as a rubber duck. Articulating the problem can help you solve it, even if the
rubber duck doesn’t know Python.

13.12 Exercises
Exercise 13.9. The “rank” of a word is its position in a list of words sorted by frequency: the most
common word has rank 1, the second most common has rank 2, etc.

13.12. Exercises 135

Zipf’s law describes a relationship between the ranks and frequencies of words in natural languages
(). Specifically, it predicts that the frequency,
f , of the word with rank r is:

f = cr�s

where s and c are parameters that depend on the language and the text. If you take the logarithm of
both sides of this equation, you get:

log f = log c � s log r

So if you plot log f versus log r, you should get a straight line with slope �s and intercept log c.

Write a program that reads a text from a file, counts word frequencies, and prints one line for each
word, in descending order of frequency, with log f and log r. Use the graphing program of your
choice to plot the results and check whether they form a straight line. Can you estimate the value of
s?

Solution: . To run my solution, you need the plot-
ting module . If you installed Anaconda, you already have ; otherwise you
might have to install it.

http://en.wikipedia.org/wiki/Zipf's_law
http://thinkpython2.com/code/zipf.py

136 Chapter 13. Case study: data structure selection

Chapter 14

Files

This chapter introduces the idea of “persistent” programs that keep data in permanent stor-
age, and shows how to use different kinds of permanent storage, like files and databases.

14.1 Persistence

Most of the programs we have seen so far are transient in the sense that they run for a short
time and produce some output, but when they end, their data disappears. If you run the
program again, it starts with a clean slate.

Other programs are persistent: they run for a long time (or all the time); they keep at least
some of their data in permanent storage (a hard drive, for example); and if they shut down
and restart, they pick up where they left off.

Examples of persistent programs are operating systems, which run pretty much whenever
a computer is on, and web servers, which run all the time, waiting for requests to come in
on the network.

One of the simplest ways for programs to maintain their data is by reading and writing
text files. We have already seen programs that read text files; in this chapter we will see
programs that write them.

An alternative is to store the state of the program in a database. In this chapter I will present
a simple database and a module, , that makes it easy to store program data.

14.2 Reading and writing

A text file is a sequence of characters stored on a permanent medium like a hard drive,
flash memory, or CD-ROM. We saw how to open and read a file in Section 9.1.

To write a file, you have to open it with mode as a second parameter:

138 Chapter 14. Files

If the file already exists, opening it in write mode clears out the old data and starts fresh,
so be careful! If the file doesn’t exist, a new one is created.

returns a file object that provides methods for working with the file. The
method puts data into the file.

The return value is the number of characters that were written. The file object keeps track
of where it is, so if you call again, it adds the new data to the end of the file.

When you are done writing, you should close the file.

If you don’t close the file, it gets closed for you when the program ends.

14.3 Format operator
The argument of has to be a string, so if we want to put other values in a file, we
have to convert them to strings. The easiest way to do that is with :

An alternative is to use the format operator, . When applied to integers, is the modulus
operator. But when the first operand is a string, is the format operator.

The first operand is the format string, which contains one or more format sequences,
which specify how the second operand is formatted. The result is a string.

For example, the format sequence means that the second operand should be format-
ted as a decimal integer:

The result is the string , which is not to be confused with the integer value .

A format sequence can appear anywhere in the string, so you can embed a value in a
sentence:

If there is more than one format sequence in the string, the second argument has to be a
tuple. Each format sequence is matched with an element of the tuple, in order.

The following example uses to format an integer, to format a floating-point num-
ber, and to format a string:

deprecated…use string format method, instead

14.4. Filenames and paths 139

The number of elements in the tuple has to match the number of format sequences in the
string. Also, the types of the elements have to match the format sequences:

In the first example, there aren’t enough elements; in the second, the element is the wrong
type.

For more information on the format operator, see
. A more powerful alternative is

the string format method, which you can read about at
.

14.4 Filenames and paths
Files are organized into directories (also called “folders”). Every running program has a
“current directory”, which is the default directory for most operations. For example, when
you open a file for reading, Python looks for it in the current directory.

The module provides functions for working with files and directories (“os” stands for
“operating system”). returns the name of the current directory:

stands for “current working directory”. The result in this example is ,
which is the home directory of a user named .

A string like that identifies a file or directory is called a path.

A simple filename, like is also considered a path, but it is a relative path because
it relates to the current directory. If the current directory is , the filename

would refer to .

A path that begins with does not depend on the current directory; it is called an absolute
path. To find the absolute path to a file, you can use :

provides other functions for working with filenames and paths. For example,
checks whether a file or directory exists:

If it exists, checks whether it’s a directory:

https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/library/stdtypes.html#printf-style-string-formatting
https://docs.python.org/3/library/stdtypes.html#str.format
https://docs.python.org/3/library/stdtypes.html#str.format

140 Chapter 14. Files

Similarly, checks whether it’s a file.

returns a list of the files (and other directories) in the given directory:

To demonstrate these functions, the following example “walks” through a directory, prints
the names of all the files, and calls itself recursively on all the directories.

takes a directory and a file name and joins them into a complete path.

The module provides a function called that is similar to this one but more ver-
satile. As an exercise, read the documentation and use it to print the names of the
files in a given directory and its subdirectories. You can download my solution from

.

14.5 Catching exceptions

A lot of things can go wrong when you try to read and write files. If you try to open a file
that doesn’t exist, you get an :

If you don’t have permission to access a file:

And if you try to open a directory for reading, you get

To avoid these errors, you could use functions like and ,
but it would take a lot of time and code to check all the possibilities (if “ ” is any
indication, there are at least 21 things that can go wrong).

It is better to go ahead and try—and deal with problems if they happen—which is exactly
what the statement does. The syntax is similar to an statement:

http://thinkpython2.com/code/walk.py

14.6. Databases 141

Python starts by executing the clause. If all goes well, it skips the clause and
proceeds. If an exception occurs, it jumps out of the clause and runs the clause.

Handling an exception with a statement is called catching an exception. In this exam-
ple, the clause prints an error message that is not very helpful. In general, catching
an exception gives you a chance to fix the problem, or try again, or at least end the program
gracefully.

14.6 Databases

A database is a file that is organized for storing data. Many databases are organized like a
dictionary in the sense that they map from keys to values. The biggest difference between
a database and a dictionary is that the database is on disk (or other permanent storage), so
it persists after the program ends.

The module provides an interface for creating and updating database files. As an
example, I’ll create a database that contains captions for image files.

Opening a database is similar to opening other files:

The mode means that the database should be created if it doesn’t already exist. The
result is a database object that can be used (for most operations) like a dictionary.

When you create a new item, updates the database file.

When you access one of the items, reads the file:

The result is a bytes object, which is why it begins with . A bytes object is similar to a
string in many ways. When you get farther into Python, the difference becomes important,
but for now we can ignore it.

If you make another assignment to an existing key, replaces the old value:

Some dictionary methods, like and , don’t work with database objects. But
iteration with a loop works:

As with other files, you should close the database when you are done:

142 Chapter 14. Files

14.7 Pickling

A limitation of is that the keys and values have to be strings or bytes. If you try to use
any other type, you get an error.

The module can help. It translates almost any type of object into a string suitable
for storage in a database, and then translates strings back into objects.

takes an object as a parameter and returns a string representation (is
short for “dump string”):

The format isn’t obvious to human readers; it is meant to be easy for to interpret.
(“load string”) reconstitutes the object:

Although the new object has the same value as the old, it is not (in general) the same object:

In other words, pickling and then unpickling has the same effect as copying the object.

You can use to store non-strings in a database. In fact, this combination is so com-
mon that it has been encapsulated in a module called .

14.8 Pipes

Most operating systems provide a command-line interface, also known as a shell. Shells
usually provide commands to navigate the file system and launch applications. For exam-
ple, in Unix you can change directories with , display the contents of a directory with ,
and launch a web browser by typing (for example) .

Any program that you can launch from the shell can also be launched from Python using
a pipe object, which represents a running program.

For example, the Unix command normally displays the contents of the current di-
rectory in long format. You can launch with 1:

1 is deprecated now, which means we are supposed to stop using it and start using the
module. But for simple cases, I find more complicated than necessary. So I am going to keep using

until they take it away.

14.9. Writing modules 143

The argument is a string that contains a shell command. The return value is an object that
behaves like an open file. You can read the output from the process one line at a time
with or get the whole thing at once with :

When you are done, you close the pipe like a file:

The return value is the final status of the process; means that it ended normally
(with no errors).

For example, most Unix systems provide a command called that reads the contents
of a file and computes a “checksum”. You can read about MD5 at

. This command provides an efficient way to check whether two files have
the same contents. The probability that different contents yield the same checksum is very
small (that is, unlikely to happen before the universe collapses).

You can use a pipe to run from Python and get the result:

14.9 Writing modules

Any file that contains Python code can be imported as a module. For example, suppose
you have a file named with the following code:

If you run this program, it reads itself and prints the number of lines in the file, which is 7.
You can also import it like this:

Now you have a module object :

http://en.wikipedia.org/wiki/Md5
http://en.wikipedia.org/wiki/Md5

144 Chapter 14. Files

The module object provides :

So that’s how you write modules in Python.

The only problem with this example is that when you import the module it runs the test
code at the bottom. Normally when you import a module, it defines new functions but it
doesn’t run them.

Programs that will be imported as modules often use the following idiom:

is a built-in variable that is set when the program starts. If the program is running
as a script, has the value ; in that case, the test code runs. Otherwise,
if the module is being imported, the test code is skipped.

As an exercise, type this example into a file named and run it as a script. Then run
the Python interpreter and . What is the value of when the module is
being imported?

Warning: If you import a module that has already been imported, Python does nothing. It
does not re-read the file, even if it has changed.

If you want to reload a module, you can use the built-in function , but it can be
tricky, so the safest thing to do is restart the interpreter and then import the module again.

14.10 Debugging
When you are reading and writing files, you might run into problems with whitespace.
These errors can be hard to debug because spaces, tabs and newlines are normally invisible:

The built-in function can help. It takes any object as an argument and returns a string
representation of the object. For strings, it represents whitespace characters with backslash
sequences:

This can be helpful for debugging.

One other problem you might run into is that different systems use different characters to
indicate the end of a line. Some systems use a newline, represented . Others use a return
character, represented . Some use both. If you move files between different systems,
these inconsistencies can cause problems.

For most systems, there are applications to convert from one format to another. You can
find them (and read more about this issue) at .
Or, of course, you could write one yourself.

http://en.wikipedia.org/wiki/Newline

14.11. Glossary 145

14.11 Glossary
persistent: Pertaining to a program that runs indefinitely and keeps at least some of its

data in permanent storage.

format operator: An operator, , that takes a format string and a tuple and generates a
string that includes the elements of the tuple formatted as specified by the format
string.

format string: A string, used with the format operator, that contains format sequences.

format sequence: A sequence of characters in a format string, like , that specifies how a
value should be formatted.

text file: A sequence of characters stored in permanent storage like a hard drive.

directory: A named collection of files, also called a folder.

path: A string that identifies a file.

relative path: A path that starts from the current directory.

absolute path: A path that starts from the topmost directory in the file system.

catch: To prevent an exception from terminating a program using the and state-
ments.

database: A file whose contents are organized like a dictionary with keys that correspond
to values.

bytes object: An object similar to a string.

shell: A program that allows users to type commands and then executes them by starting
other programs.

pipe object: An object that represents a running program, allowing a Python program to
run commands and read the results.

14.12 Exercises
Exercise 14.1. Write a function called that takes as arguments a pattern string, a replacement
string, and two filenames; it should read the first file and write the contents into the second file
(creating it if necessary). If the pattern string appears anywhere in the file, it should be replaced
with the replacement string.

If an error occurs while opening, reading, writing or closing files, your program should catch the
exception, print an error message, and exit. Solution:

.
Exercise 14.2. If you download my solution to Exercise 12.2 from

, you’ll see that it creates a dictionary that maps from a sorted string of
letters to the list of words that can be spelled with those letters. For example, maps to the
list .

Write a module that imports and provides two new functions:
should store the anagram dictionary in a “shelf”; should look up a word and return
a list of its anagrams. Solution: .

http://thinkpython2.com/code/sed.py
http://thinkpython2.com/code/sed.py
http://thinkpython2.com/code/anagram_sets.py
http://thinkpython2.com/code/anagram_sets.py
http://thinkpython2.com/code/anagram_db.py

146 Chapter 14. Files

Exercise 14.3. In a large collection of MP3 files, there may be more than one copy of the same song,
stored in different directories or with different file names. The goal of this exercise is to search for
duplicates.

1. Write a program that searches a directory and all of its subdirectories, recursively, and returns
a list of complete paths for all files with a given suffix (like). Hint: provides
several useful functions for manipulating file and path names.

2. To recognize duplicates, you can use to compute a “checksum” for each files. If two
files have the same checksum, they probably have the same contents.

3. To double-check, you can use the Unix command .

Solution: .

http://thinkpython2.com/code/find_duplicates.py

Chapter 15

Classes and objects

At this point you know how to use functions to organize code and built-in types to organize
data. The next step is to learn “object-oriented programming”, which uses programmer-
defined types to organize both code and data. Object-oriented programming is a big topic;
it will take a few chapters to get there.

Code examples from this chapter are available from
; solutions to the exercises are available from

.

15.1 Programmer-defined types

We have used many of Python’s built-in types; now we are going to define a new type. As
an example, we will create a type called that represents a point in two-dimensional
space.

In mathematical notation, points are often written in parentheses with a comma separating
the coordinates. For example, (0, 0) represents the origin, and (x, y) represents the point x
units to the right and y units up from the origin.

There are several ways we might represent points in Python:

• We could store the coordinates separately in two variables, and .

• We could store the coordinates as elements in a list or tuple.

• We could create a new type to represent points as objects.

Creating a new type is more complicated than the other options, but it has advantages that
will be apparent soon.

A programmer-defined type is also called a class. A class definition looks like this:

http://thinkpython2.com/code/Point1.py
http://thinkpython2.com/code/Point1.py
http://thinkpython2.com/code/Point1_soln.py
http://thinkpython2.com/code/Point1_soln.py

148 Chapter 15. Classes and objects

x

y

3.0

4.0

blank

Point

Figure 15.1: Object diagram.

The header indicates that the new class is called . The body is a docstring that ex-
plains what the class is for. You can define variables and methods inside a class definition,
but we will get back to that later.

Defining a class named creates a class object.

Because is defined at the top level, its “full name” is .

The class object is like a factory for creating objects. To create a Point, you call as if it
were a function.

The return value is a reference to a Point object, which we assign to .

Creating a new object is called instantiation, and the object is an instance of the class.

When you print an instance, Python tells you what class it belongs to and where it is stored
in memory (the prefix means that the following number is in hexadecimal).

Every object is an instance of some class, so “object” and “instance” are interchangeable.
But in this chapter I use “instance” to indicate that I am talking about a programmer-
defined type.

15.2 Attributes
You can assign values to an instance using dot notation:

This syntax is similar to the syntax for selecting a variable from a module, such as
or . In this case, though, we are assigning values to named elements of
an object. These elements are called attributes.

As a noun, “AT-trib-ute” is pronounced with emphasis on the first syllable, as opposed to
“a-TRIB-ute”, which is a verb.

The following diagram shows the result of these assignments. A state diagram that shows
an object and its attributes is called an object diagram; see Figure 15.1.

The variable refers to a Point object, which contains two attributes. Each attribute
refers to a floating-point number.

You can read the value of an attribute using the same syntax:

15.3. Rectangles 149

The expression means, “Go to the object refers to and get the value of .” In
the example, we assign that value to a variable named . There is no conflict between the
variable and the attribute .

You can use dot notation as part of any expression. For example:

You can pass an instance as an argument in the usual way. For example:

takes a point as an argument and displays it in mathematical notation. To
invoke it, you can pass as an argument:

Inside the function, is an alias for , so if the function modifies , changes.

As an exercise, write a function called that takes two Points as
arguments and returns the distance between them.

15.3 Rectangles

Sometimes it is obvious what the attributes of an object should be, but other times you have
to make decisions. For example, imagine you are designing a class to represent rectangles.
What attributes would you use to specify the location and size of a rectangle? You can ig-
nore angle; to keep things simple, assume that the rectangle is either vertical or horizontal.

There are at least two possibilities:

• You could specify one corner of the rectangle (or the center), the width, and the
height.

• You could specify two opposing corners.

At this point it is hard to say whether either is better than the other, so we’ll implement the
first one, just as an example.

Here is the class definition:

150 Chapter 15. Classes and objects

y

0.0x

0.0

width 100.0

corner

200.0
Point

Rectangle

box

height

Figure 15.2: Object diagram.

The docstring lists the attributes: and are numbers; is a Point object
that specifies the lower-left corner.

To represent a rectangle, you have to instantiate a Rectangle object and assign values to the
attributes:

The expression means, “Go to the object refers to and select the attribute
named ; then go to that object and select the attribute named .”

Figure 15.2 shows the state of this object. An object that is an attribute of another object is
embedded.

15.4 Instances as return values

Functions can return instances. For example, takes a as an argu-
ment and returns a that contains the coordinates of the center of the :

Here is an example that passes as an argument and assigns the resulting Point to
:

15.5. Objects are mutable 151

15.5 Objects are mutable
You can change the state of an object by making an assignment to one of its attributes. For
example, to change the size of a rectangle without changing its position, you can modify
the values of and :

You can also write functions that modify objects. For example, takes a
Rectangle object and two numbers, and , and adds the numbers to the
width and height of the rectangle:

Here is an example that demonstrates the effect:

Inside the function, is an alias for , so when the function modifies ,
changes.

As an exercise, write a function named that takes a Rectangle and two
numbers named and . It should change the location of the rectangle by adding to
the coordinate of and adding to the coordinate of .

15.6 Copying
Aliasing can make a program difficult to read because changes in one place might have
unexpected effects in another place. It is hard to keep track of all the variables that might
refer to a given object.

Copying an object is often an alternative to aliasing. The module contains a function
called that can duplicate any object:

and contain the same data, but they are not the same Point.

152 Chapter 15. Classes and objects

y

0.0x

0.0

width

height

100.0

corner

200.0

box 100.0

200.0

width

height

corner

box2

Figure 15.3: Object diagram.

The operator indicates that and are not the same object, which is what we ex-
pected. But you might have expected to yield because these points contain the
same data. In that case, you will be disappointed to learn that for instances, the default
behavior of the operator is the same as the operator; it checks object identity, not
object equivalence. That’s because for programmer-defined types, Python doesn’t know
what should be considered equivalent. At least, not yet.

If you use to duplicate a Rectangle, you will find that it copies the Rectangle
object but not the embedded Point.

Figure 15.3 shows what the object diagram looks like. This operation is called a shallow
copy because it copies the object and any references it contains, but not the embedded
objects.

For most applications, this is not what you want. In this example, invoking
on one of the Rectangles would not affect the other, but invoking

on either would affect both! This behavior is confusing and error-prone.

Fortunately, the module provides a method named that copies not only the
object but also the objects it refers to, and the objects they refer to, and so on. You will not
be surprised to learn that this operation is called a deep copy.

and are completely separate objects.

As an exercise, write a version of that creates and returns a new Rectangle
instead of modifying the old one.

15.7 Debugging

When you start working with objects, you are likely to encounter some new exceptions. If
you try to access an attribute that doesn’t exist, you get an :

15.8. Glossary 153

If you are not sure what type an object is, you can ask:

You can also use to check whether an object is an instance of a class:

If you are not sure whether an object has a particular attribute, you can use the built-in
function :

The first argument can be any object; the second argument is a string that contains the name
of the attribute.

You can also use a statement to see if the object has the attributes you need:

This approach can make it easier to write functions that work with different types; more
on that topic is coming up in Section 17.9.

15.8 Glossary
class: A programmer-defined type. A class definition creates a new class object.

class object: An object that contains information about a programmer-defined type. The
class object can be used to create instances of the type.

instance: An object that belongs to a class.

instantiate: To create a new object.

attribute: One of the named values associated with an object.

embedded object: An object that is stored as an attribute of another object.

shallow copy: To copy the contents of an object, including any references to embedded
objects; implemented by the function in the module.

deep copy: To copy the contents of an object as well as any embedded objects, and any
objects embedded in them, and so on; implemented by the function in the

module.

object diagram: A diagram that shows objects, their attributes, and the values of the at-
tributes.

154 Chapter 15. Classes and objects

15.9 Exercises

Exercise 15.1. Write a definition for a class named with attributes and ,
where is a Point object and radius is a number.

Instantiate a Circle object that represents a circle with its center at (150, 100) and radius 75.

Write a function named that takes a Circle and a Point and returns True if the
Point lies in or on the boundary of the circle.

Write a function named that takes a Circle and a Rectangle and returns True if
the Rectangle lies entirely in or on the boundary of the circle.

Write a function named that takes a Circle and a Rectangle and returns
True if any of the corners of the Rectangle fall inside the circle. Or as a more challenging version,
return True if any part of the Rectangle falls inside the circle.

Solution: .
Exercise 15.2. Write a function called that takes a Turtle object and a Rectangle and
uses the Turtle to draw the Rectangle. See Chapter 4 for examples using Turtle objects.

Write a function called that takes a Turtle and a Circle and draws the Circle.

Solution: .

http://thinkpython2.com/code/Circle.py
http://thinkpython2.com/code/draw.py

Chapter 16

Classes and functions

Now that we know how to create new types, the next step is to write functions that take
programmer-defined objects as parameters and return them as results. In this chapter I
also present “functional programming style” and two new program development plans.

Code examples from this chapter are available from
. Solutions to the exercises are at

.

16.1 Time

As another example of a programmer-defined type, we’ll define a class called that
records the time of day. The class definition looks like this:

We can create a new object and assign attributes for hours, minutes, and seconds:

The state diagram for the object looks like Figure 16.1.

As an exercise, write a function called that takes a Time object and prints it in
the form . Hint: the format sequence prints an integer using
at least two digits, including a leading zero if necessary.

Write a boolean function called that takes two Time objects, and , and re-
turns if follows chronologically and otherwise. Challenge: don’t use an

statement.

http://thinkpython2.com/code/Time1.py
http://thinkpython2.com/code/Time1.py
http://thinkpython2.com/code/Time1_soln.py
http://thinkpython2.com/code/Time1_soln.py

156 Chapter 16. Classes and functions

59

30

hour

minute

second

11

Time

time

Figure 16.1: Object diagram.

16.2 Pure functions
In the next few sections, we’ll write two functions that add time values. They demonstrate
two kinds of functions: pure functions and modifiers. They also demonstrate a develop-
ment plan I’ll call prototype and patch, which is a way of tackling a complex problem by
starting with a simple prototype and incrementally dealing with the complications.

Here is a simple prototype of :

The function creates a new object, initializes its attributes, and returns a reference to
the new object. This is called a pure function because it does not modify any of the objects
passed to it as arguments and it has no effect, like displaying a value or getting user input,
other than returning a value.

To test this function, I’ll create two Time objects: contains the start time of a movie,
like Monty Python and the Holy Grail, and contains the run time of the movie,
which is one hour 35 minutes.

figures out when the movie will be done.

The result, might not be what you were hoping for. The problem is that this
function does not deal with cases where the number of seconds or minutes adds up to
more than sixty. When that happens, we have to “carry” the extra seconds into the minute
column or the extra minutes into the hour column.

Here’s an improved version:

16.3. Modifiers 157

Although this function is correct, it is starting to get big. We will see a shorter alternative
later.

16.3 Modifiers
Sometimes it is useful for a function to modify the objects it gets as parameters. In that case,
the changes are visible to the caller. Functions that work this way are called modifiers.

, which adds a given number of seconds to a object, can be written naturally
as a modifier. Here is a rough draft:

The first line performs the basic operation; the remainder deals with the special cases we
saw before.

Is this function correct? What happens if is much greater than sixty?

In that case, it is not enough to carry once; we have to keep doing it until is
less than sixty. One solution is to replace the statements with statements. That
would make the function correct, but not very efficient. As an exercise, write a correct
version of that doesn’t contain any loops.

Anything that can be done with modifiers can also be done with pure functions. In fact,
some programming languages only allow pure functions. There is some evidence that
programs that use pure functions are faster to develop and less error-prone than programs
that use modifiers. But modifiers are convenient at times, and functional programs tend to
be less efficient.

158 Chapter 16. Classes and functions

In general, I recommend that you write pure functions whenever it is reasonable and resort
to modifiers only if there is a compelling advantage. This approach might be called a
functional programming style.

As an exercise, write a “pure” version of that creates and returns a new Time
object rather than modifying the parameter.

16.4 Prototyping versus planning
The development plan I am demonstrating is called “prototype and patch”. For each func-
tion, I wrote a prototype that performed the basic calculation and then tested it, patching
errors along the way.

This approach can be effective, especially if you don’t yet have a deep understanding
of the problem. But incremental corrections can generate code that is unnecessarily
complicated—since it deals with many special cases—and unreliable—since it is hard to
know if you have found all the errors.

An alternative is designed development, in which high-level insight into the problem can
make the programming much easier. In this case, the insight is that a Time object is really
a three-digit number in base 60 (see .)! The

attribute is the “ones column”, the attribute is the “sixties column”, and the
attribute is the “thirty-six hundreds column”.

When we wrote and , we were effectively doing addition in base 60,
which is why we had to carry from one column to the next.

This observation suggests another approach to the whole problem—we can convert Time
objects to integers and take advantage of the fact that the computer knows how to do
integer arithmetic.

Here is a function that converts Times to integers:

And here is a function that converts an integer to a Time (recall that divides the first
argument by the second and returns the quotient and remainder as a tuple).

You might have to think a bit, and run some tests, to convince yourself that these functions
are correct. One way to test them is to check that for
many values of . This is an example of a consistency check.

Once you are convinced they are correct, you can use them to rewrite :

http://en.wikipedia.org/wiki/Sexagesimal

16.5. Debugging 159

This version is shorter than the original, and easier to verify. As an exercise, rewrite
using and .

In some ways, converting from base 60 to base 10 and back is harder than just dealing with
times. Base conversion is more abstract; our intuition for dealing with time values is better.

But if we have the insight to treat times as base 60 numbers and make the investment of
writing the conversion functions (and), we get a program that
is shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two Times to find
the duration between them. The naive approach would be to implement subtraction with
borrowing. Using the conversion functions would be easier and more likely to be correct.

Ironically, sometimes making a problem harder (or more general) makes it easier (because
there are fewer special cases and fewer opportunities for error).

16.5 Debugging
A Time object is well-formed if the values of and are between 0 and 60
(including 0 but not 60) and if is positive. and should be integral values,
but we might allow to have a fraction part.

Requirements like these are called invariants because they should always be true. To put
it a different way, if they are not true, something has gone wrong.

Writing code to check invariants can help detect errors and find their causes. For example,
you might have a function like that takes a Time object and returns if it
violates an invariant:

At the beginning of each function you could check the arguments to make sure they are
valid:

Or you could use an assert statement, which checks a given invariant and raises an excep-
tion if it fails:

statements are useful because they distinguish code that deals with normal condi-
tions from code that checks for errors.

160 Chapter 16. Classes and functions

16.6 Glossary
prototype and patch: A development plan that involves writing a rough draft of a pro-

gram, testing, and correcting errors as they are found.

designed development: A development plan that involves high-level insight into the
problem and more planning than incremental development or prototype develop-
ment.

pure function: A function that does not modify any of the objects it receives as arguments.
Most pure functions are fruitful.

modifier: A function that changes one or more of the objects it receives as arguments. Most
modifiers are void; that is, they return .

functional programming style: A style of program design in which the majority of func-
tions are pure.

invariant: A condition that should always be true during the execution of a program.

assert statement: A statement that check a condition and raises an exception if it fails.

16.7 Exercises

Code examples from this chapter are available from
; solutions to the exercises are available from

.
Exercise 16.1. Write a function called that takes a Time object and a number and returns
a new Time object that contains the product of the original Time and the number.

Then use to write a function that takes a Time object that represents the finishing time
in a race, and a number that represents the distance, and returns a Time object that represents the
average pace (time per mile).
Exercise 16.2. The module provides objects that are similar to the Time objects
in this chapter, but they provide a rich set of methods and operators. Read the documentation at

.

1. Use the module to write a program that gets the current date and prints the day of
the week.

2. Write a program that takes a birthday as input and prints the user’s age and the number of
days, hours, minutes and seconds until their next birthday.

3. For two people born on different days, there is a day when one is twice as old as the other.
That’s their Double Day. Write a program that takes two birthdays and computes their Double
Day.

4. For a little more challenge, write the more general version that computes the day when one
person is n times older than the other.

Solution:

http://thinkpython2.com/code/Time1.py
http://thinkpython2.com/code/Time1.py
http://thinkpython2.com/code/Time1_soln.py
http://thinkpython2.com/code/Time1_soln.py
http://docs.python.org/3/library/datetime.html
http://thinkpython2.com/code/double.py

Chapter 17

Classes and methods

Although we are using some of Python’s object-oriented features, the programs from the
last two chapters are not really object-oriented because they don’t represent the relation-
ships between programmer-defined types and the functions that operate on them. The next
step is to transform those functions into methods that make the relationships explicit.

Code examples from this chapter are available from
, and solutions to the exercises are in

.

17.1 Object-oriented features

Python is an object-oriented programming language, which means that it provides fea-
tures that support object-oriented programming, which has these defining characteristics:

• Programs include class and method definitions.

• Most of the computation is expressed in terms of operations on objects.

• Objects often represent things in the real world, and methods often correspond to the
ways things in the real world interact.

For example, the class defined in Chapter 16 corresponds to the way people record
the time of day, and the functions we defined correspond to the kinds of things people do
with times. Similarly, the and classes in Chapter 15 correspond to the
mathematical concepts of a point and a rectangle.

So far, we have not taken advantage of the features Python provides to support object-
oriented programming. These features are not strictly necessary; most of them provide
alternative syntax for things we have already done. But in many cases, the alternative is
more concise and more accurately conveys the structure of the program.

For example, in there is no obvious connection between the class definition and
the function definitions that follow. With some examination, it is apparent that every func-
tion takes at least one object as an argument.

http://thinkpython2.com/code/Time2.py
http://thinkpython2.com/code/Time2.py
http://thinkpython2.com/code/Point2_soln.py
http://thinkpython2.com/code/Point2_soln.py

162 Chapter 17. Classes and methods

This observation is the motivation for methods; a method is a function that is associated
with a particular class. We have seen methods for strings, lists, dictionaries and tuples. In
this chapter, we will define methods for programmer-defined types.

Methods are semantically the same as functions, but there are two syntactic differences:

• Methods are defined inside a class definition in order to make the relationship be-
tween the class and the method explicit.

• The syntax for invoking a method is different from the syntax for calling a function.

In the next few sections, we will take the functions from the previous two chapters and
transform them into methods. This transformation is purely mechanical; you can do it by
following a sequence of steps. If you are comfortable converting from one form to another,
you will be able to choose the best form for whatever you are doing.

17.2 Printing objects

In Chapter 16, we defined a class named and in Section 16.1, you wrote a function
named :

To call this function, you have to pass a object as an argument:

To make a method, all we have to do is move the function definition inside the
class definition. Notice the change in indentation.

Now there are two ways to call . The first (and less common) way is to use
function syntax:

In this use of dot notation, is the name of the class, and is the name of the
method. is passed as a parameter.

The second (and more concise) way is to use method syntax:

17.3. Another example 163

In this use of dot notation, is the name of the method (again), and is
the object the method is invoked on, which is called the subject. Just as the subject of
a sentence is what the sentence is about, the subject of a method invocation is what the
method is about.

Inside the method, the subject is assigned to the first parameter, so in this case is
assigned to .

By convention, the first parameter of a method is called , so it would be more common
to write like this:

The reason for this convention is an implicit metaphor:

• The syntax for a function call, , suggests that the function is the
active agent. It says something like, “Hey ! Here’s an object for you to
print.”

• In object-oriented programming, the objects are the active agents. A method invoca-
tion like says “Hey ! Please print yourself.”

This change in perspective might be more polite, but it is not obvious that it is useful. In the
examples we have seen so far, it may not be. But sometimes shifting responsibility from the
functions onto the objects makes it possible to write more versatile functions (or methods),
and makes it easier to maintain and reuse code.

As an exercise, rewrite (from Section 16.4) as a method. You might be tempted
to rewrite as a method, too, but that doesn’t really make sense because there
would be no object to invoke it on.

17.3 Another example

Here’s a version of (from Section 16.3) rewritten as a method:

This version assumes that is written as a method. Also, note that it is a pure
function, not a modifier.

Here’s how you would invoke :

164 Chapter 17. Classes and methods

The subject, , gets assigned to the first parameter, . The argument, , gets
assigned to the second parameter, .

This mechanism can be confusing, especially if you make an error. For example, if you
invoke with two arguments, you get:

The error message is initially confusing, because there are only two arguments in paren-
theses. But the subject is also considered an argument, so all together that’s three.

By the way, a positional argument is an argument that doesn’t have a parameter name;
that is, it is not a keyword argument. In this function call:

and are positional, and is a keyword argument.

17.4 A more complicated example

Rewriting (from Section 16.1) is slightly more complicated because it takes two
Time objects as parameters. In this case it is conventional to name the first parameter
and the second parameter :

To use this method, you have to invoke it on one object and pass the other as an argument:

One nice thing about this syntax is that it almost reads like English: “end is after start?”

17.5 The init method

The init method (short for “initialization”) is a special method that gets invoked when an
object is instantiated. Its full name is (two underscore characters, followed by

, and then two more underscores). An init method for the class might look like
this:

It is common for the parameters of to have the same names as the attributes. The
statement

17.6. The method 165

stores the value of the parameter as an attribute of .

The parameters are optional, so if you call with no arguments, you get the default
values.

If you provide one argument, it overrides :

If you provide two arguments, they override and .

And if you provide three arguments, they override all three default values.

As an exercise, write an init method for the class that takes and as optional
parameters and assigns them to the corresponding attributes.

17.6 The method

is a special method, like , that is supposed to return a string representa-
tion of an object.

For example, here is a method for Time objects:

When you an object, Python invokes the method:

When I write a new class, I almost always start by writing , which makes it easier
to instantiate objects, and , which is useful for debugging.

As an exercise, write a method for the class. Create a Point object and print it.

17.7 Operator overloading

By defining other special methods, you can specify the behavior of operators on
programmer-defined types. For example, if you define a method named for the

class, you can use the operator on Time objects.

Here is what the definition might look like:

166 Chapter 17. Classes and methods

And here is how you could use it:

When you apply the operator to Time objects, Python invokes . When you print
the result, Python invokes . So there is a lot happening behind the scenes!

Changing the behavior of an operator so that it works with programmer-defined types is
called operator overloading. For every operator in Python there is a corresponding spe-
cial method, like . For more details, see

.

As an exercise, write an method for the Point class.

17.8 Type-based dispatch
In the previous section we added two Time objects, but you also might want to add an
integer to a Time object. The following is a version of that checks the type of

and invokes either or :

The built-in function takes a value and a class object, and returns if the
value is an instance of the class.

If is a Time object, invokes . Otherwise it assumes that the param-
eter is a number and invokes . This operation is called a type-based dispatch
because it dispatches the computation to different methods based on the type of the argu-
ments.

Here are examples that use the operator with different types:

http://docs.python.org/3/reference/datamodel.html#specialnames
http://docs.python.org/3/reference/datamodel.html#specialnames

17.9. Polymorphism 167

Unfortunately, this implementation of addition is not commutative. If the integer is the
first operand, you get

The problem is, instead of asking the Time object to add an integer, Python is asking an
integer to add a Time object, and it doesn’t know how. But there is a clever solution for this
problem: the special method , which stands for “right-side add”. This method
is invoked when a Time object appears on the right side of the operator. Here’s the
definition:

And here’s how it’s used:

As an exercise, write an method for Points that works with either a Point object or a
tuple:

• If the second operand is a Point, the method should return a new Point whose x
coordinate is the sum of the x coordinates of the operands, and likewise for the y
coordinates.

• If the second operand is a tuple, the method should add the first element of the tuple
to the x coordinate and the second element to the y coordinate, and return a new
Point with the result.

17.9 Polymorphism

Type-based dispatch is useful when it is necessary, but (fortunately) it is not always neces-
sary. Often you can avoid it by writing functions that work correctly for arguments with
different types.

Many of the functions we wrote for strings also work for other sequence types. For exam-
ple, in Section 11.2 we used to count the number of times each letter appears in
a word.

168 Chapter 17. Classes and methods

This function also works for lists, tuples, and even dictionaries, as long as the elements of
are hashable, so they can be used as keys in .

Functions that work with several types are called polymorphic. Polymorphism can fa-
cilitate code reuse. For example, the built-in function , which adds the elements of a
sequence, works as long as the elements of the sequence support addition.

Since Time objects provide an method, they work with :

In general, if all of the operations inside a function work with a given type, the function
works with that type.

The best kind of polymorphism is the unintentional kind, where you discover that a func-
tion you already wrote can be applied to a type you never planned for.

17.10 Debugging
It is legal to add attributes to objects at any point in the execution of a program, but if
you have objects with the same type that don’t have the same attributes, it is easy to make
mistakes. It is considered a good idea to initialize all of an object’s attributes in the init
method.

If you are not sure whether an object has a particular attribute, you can use the built-in
function (see Section 15.7).

Another way to access attributes is the built-in function , which takes an object and
returns a dictionary that maps from attribute names (as strings) to their values:

For purposes of debugging, you might find it useful to keep this function handy:

traverses the dictionary and prints each attribute name and its corre-
sponding value.

The built-in function takes an object and an attribute name (as a string) and returns
the attribute’s value.

17.11. Interface and implementation 169

17.11 Interface and implementation

One of the goals of object-oriented design is to make software more maintainable, which
means that you can keep the program working when other parts of the system change, and
modify the program to meet new requirements.

A design principle that helps achieve that goal is to keep interfaces separate from imple-
mentations. For objects, that means that the methods a class provides should not depend
on how the attributes are represented.

For example, in this chapter we developed a class that represents a time of day. Methods
provided by this class include , , and .

We could implement those methods in several ways. The details of the implementation
depend on how we represent time. In this chapter, the attributes of a object are ,

, and .

As an alternative, we could replace these attributes with a single integer representing the
number of seconds since midnight. This implementation would make some methods, like

, easier to write, but it makes other methods harder.

After you deploy a new class, you might discover a better implementation. If other parts
of the program are using your class, it might be time-consuming and error-prone to change
the interface.

But if you designed the interface carefully, you can change the implementation without
changing the interface, which means that other parts of the program don’t have to change.

17.12 Glossary
object-oriented language: A language that provides features, such as programmer-

defined types and methods, that facilitate object-oriented programming.

object-oriented programming: A style of programming in which data and the operations
that manipulate it are organized into classes and methods.

method: A function that is defined inside a class definition and is invoked on instances of
that class.

subject: The object a method is invoked on.

positional argument: An argument that does not include a parameter name, so it is not a
keyword argument.

operator overloading: Changing the behavior of an operator like so it works with a
programmer-defined type.

type-based dispatch: A programming pattern that checks the type of an operand and in-
vokes different functions for different types.

polymorphic: Pertaining to a function that can work with more than one type.

information hiding: The principle that the interface provided by an object should not de-
pend on its implementation, in particular the representation of its attributes.

170 Chapter 17. Classes and methods

17.13 Exercises

Exercise 17.1. Download the code from this chapter from
. Change the attributes of to be a single integer representing seconds since mid-

night. Then modify the methods (and the function) to work with the new implemen-
tation. You should not have to modify the test code in . When you are done, the output should
be the same as before. Solution: .
Exercise 17.2. This exercise is a cautionary tale about one of the most common, and difficult to
find, errors in Python. Write a definition for a class named with the following methods:

1. An method that initializes an attribute named to an empty list.

2. A method named that takes an object of any type and adds it to
.

3. A method that returns a string representation of the Kangaroo object and the con-
tents of the pouch.

Test your code by creating two objects, assigning them to variables named and
, and then adding to the contents of ’s pouch.

Download . It contains a solution to the
previous problem with one big, nasty bug. Find and fix the bug.

If you get stuck, you can download ,
which explains the problem and demonstrates a solution.

http://thinkpython2.com/code/Time2.py
http://thinkpython2.com/code/Time2.py
http://thinkpython2.com/code/Time2_soln.py
http://thinkpython2.com/code/BadKangaroo.py
http://thinkpython2.com/code/GoodKangaroo.py

Chapter 18

Inheritance

The language feature most often associated with object-oriented programming is inheri-
tance. Inheritance is the ability to define a new class that is a modified version of an ex-
isting class. In this chapter I demonstrate inheritance using classes that represent playing
cards, decks of cards, and poker hands.

If you don’t play poker, you can read about it at ,
but you don’t have to; I’ll tell you what you need to know for the exercises.

Code examples from this chapter are available from
.

18.1 Card objects
There are fifty-two cards in a deck, each of which belongs to one of four suits and one of
thirteen ranks. The suits are Spades, Hearts, Diamonds, and Clubs (in descending order in
bridge). The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen, and King. Depending on
the game that you are playing, an Ace may be higher than King or lower than 2.

If we want to define a new object to represent a playing card, it is obvious what the at-
tributes should be: and . It is not as obvious what type the attributes should be.
One possibility is to use strings containing words like for suits and for
ranks. One problem with this implementation is that it would not be easy to compare cards
to see which had a higher rank or suit.

An alternative is to use integers to encode the ranks and suits. In this context, “encode”
means that we are going to define a mapping between numbers and suits, or between
numbers and ranks. This kind of encoding is not meant to be a secret (that would be
“encryption”).

For example, this table shows the suits and the corresponding integer codes:

Spades 7! 3
Hearts 7! 2
Diamonds 7! 1
Clubs 7! 0

http://en.wikipedia.org/wiki/Poker
http://thinkpython2.com/code/Card.py
http://thinkpython2.com/code/Card.py

172 Chapter 18. Inheritance

This code makes it easy to compare cards; because higher suits map to higher numbers, we
can compare suits by comparing their codes.

The mapping for ranks is fairly obvious; each of the numerical ranks maps to the corre-
sponding integer, and for face cards:

Jack 7! 11
Queen 7! 12
King 7! 13

I am using the 7! symbol to make it clear that these mappings are not part of the Python
program. They are part of the program design, but they don’t appear explicitly in the code.

The class definition for looks like this:

As usual, the init method takes an optional parameter for each attribute. The default card
is the 2 of Clubs.

To create a Card, you call with the suit and rank of the card you want.

18.2 Class attributes
In order to print Card objects in a way that people can easily read, we need a mapping
from the integer codes to the corresponding ranks and suits. A natural way to do that is
with lists of strings. We assign these lists to class attributes:

Variables like and , which are defined inside a class but outside
of any method, are called class attributes because they are associated with the class object

.

This term distinguishes them from variables like and , which are called instance
attributes because they are associated with a particular instance.

Both kinds of attribute are accessed using dot notation. For example, in ,
is a Card object, and is its rank. Similarly, is a class object, and

is a list of strings associated with the class.

18.3. Comparing cards 173

list

suit_names

list

rank_names

Card

type

1

11

suit

rank

card1

Card

Figure 18.1: Object diagram.

Every card has its own and , but there is only one copy of and
.

Putting it all together, the expression means “use the at-
tribute from the object as an index into the list from the class ,
and select the appropriate string.”

The first element of is because there is no card with rank zero. By includ-
ing as a place-keeper, we get a mapping with the nice property that the index 2 maps
to the string , and so on. To avoid this tweak, we could have used a dictionary instead
of a list.

With the methods we have so far, we can create and print cards:

Figure 18.1 is a diagram of the class object and one Card instance. is a class
object; its type is . is an instance of , so its type is . To save space, I
didn’t draw the contents of and .

18.3 Comparing cards
For built-in types, there are relational operators (, , , etc.) that compare values and de-
termine when one is greater than, less than, or equal to another. For programmer-defined
types, we can override the behavior of the built-in operators by providing a method named

, which stands for “less than”.

takes two parameters, and , and returns if is strictly less than
.

The correct ordering for cards is not obvious. For example, which is better, the 3 of Clubs
or the 2 of Diamonds? One has a higher rank, but the other has a higher suit. In order to
compare cards, you have to decide whether rank or suit is more important.

The answer might depend on what game you are playing, but to keep things simple, we’ll
make the arbitrary choice that suit is more important, so all of the Spades outrank all of the
Diamonds, and so on.

174 Chapter 18. Inheritance

With that decided, we can write :

You can write this more concisely using tuple comparison:

As an exercise, write an method for Time objects. You can use tuple comparison,
but you also might consider comparing integers.

18.4 Decks
Now that we have Cards, the next step is to define Decks. Since a deck is made up of cards,
it is natural for each Deck to contain a list of cards as an attribute.

The following is a class definition for . The init method creates the attribute and
generates the standard set of fifty-two cards:

The easiest way to populate the deck is with a nested loop. The outer loop enumerates the
suits from 0 to 3. The inner loop enumerates the ranks from 1 to 13. Each iteration creates
a new Card with the current suit and rank, and appends it to .

18.5 Printing the deck
Here is a method for :

18.6. Add, remove, shuffle and sort 175

This method demonstrates an efficient way to accumulate a large string: building a list
of strings and then using the string method . The built-in function invokes the

method on each card and returns the string representation.

Since we invoke on a newline character, the cards are separated by newlines. Here’s
what the result looks like:

Even though the result appears on 52 lines, it is one long string that contains newlines.

18.6 Add, remove, shuffle and sort
To deal cards, we would like a method that removes a card from the deck and returns it.
The list method provides a convenient way to do that:

Since removes the last card in the list, we are dealing from the bottom of the deck.

To add a card, we can use the list method :

A method like this that uses another method without doing much work is sometimes called
a veneer. The metaphor comes from woodworking, where a veneer is a thin layer of good
quality wood glued to the surface of a cheaper piece of wood to improve the appearance.

In this case is a “thin” method that expresses a list operation in terms appropriate
for decks. It improves the appearance, or interface, of the implementation.

As another example, we can write a Deck method named using the function
from the module:

176 Chapter 18. Inheritance

Don’t forget to import .

As an exercise, write a Deck method named that uses the list method to sort the
cards in a . uses the method we defined to determine the order.

18.7 Inheritance
Inheritance is the ability to define a new class that is a modified version of an existing class.
As an example, let’s say we want a class to represent a “hand”, that is, the cards held by
one player. A hand is similar to a deck: both are made up of a collection of cards, and both
require operations like adding and removing cards.

A hand is also different from a deck; there are operations we want for hands that don’t
make sense for a deck. For example, in poker we might compare two hands to see which
one wins. In bridge, we might compute a score for a hand in order to make a bid.

This relationship between classes—similar, but different—lends itself to inheritance. To
define a new class that inherits from an existing class, you put the name of the existing
class in parentheses:

This definition indicates that inherits from ; that means we can use methods like
and for Hands as well as Decks.

When a new class inherits from an existing one, the existing one is called the parent and
the new class is called the child.

In this example, inherits from , but it doesn’t really do what we want:
instead of populating the hand with 52 new cards, the init method for Hands should ini-
tialize with an empty list.

If we provide an init method in the class, it overrides the one in the class:

When you create a Hand, Python invokes this init method, not the one in .

The other methods are inherited from , so we can use and to deal
a card:

18.8. Class diagrams 177

A natural next step is to encapsulate this code in a method called :

takes two arguments, a Hand object and the number of cards to deal. It modi-
fies both and , and returns .

In some games, cards are moved from one hand to another, or from a hand back to the
deck. You can use for any of these operations: can be either a Deck or a
Hand, and , despite the name, can also be a .

Inheritance is a useful feature. Some programs that would be repetitive without inheritance
can be written more elegantly with it. Inheritance can facilitate code reuse, since you can
customize the behavior of parent classes without having to modify them. In some cases,
the inheritance structure reflects the natural structure of the problem, which makes the
design easier to understand.

On the other hand, inheritance can make programs difficult to read. When a method is
invoked, it is sometimes not clear where to find its definition. The relevant code may be
spread across several modules. Also, many of the things that can be done using inheritance
can be done as well or better without it.

18.8 Class diagrams

So far we have seen stack diagrams, which show the state of a program, and object dia-
grams, which show the attributes of an object and their values. These diagrams represent
a snapshot in the execution of a program, so they change as the program runs.

They are also highly detailed; for some purposes, too detailed. A class diagram is a more
abstract representation of the structure of a program. Instead of showing individual ob-
jects, it shows classes and the relationships between them.

There are several kinds of relationship between classes:

• Objects in one class might contain references to objects in another class. For example,
each Rectangle contains a reference to a Point, and each Deck contains references to
many Cards. This kind of relationship is called HAS-A, as in, “a Rectangle has a
Point.”

• One class might inherit from another. This relationship is called IS-A, as in, “a Hand
is a kind of a Deck.”

• One class might depend on another in the sense that objects in one class take ob-
jects in the second class as parameters, or use objects in the second class as part of a
computation. This kind of relationship is called a dependency.

A class diagram is a graphical representation of these relationships. For example, Fig-
ure 18.2 shows the relationships between , and .

178 Chapter 18. Inheritance

Hand

Deck * Card

Figure 18.2: Class diagram.

The arrow with a hollow triangle head represents an IS-A relationship; in this case it indi-
cates that Hand inherits from Deck.

The standard arrow head represents a HAS-A relationship; in this case a Deck has refer-
ences to Card objects.

The star () near the arrow head is a multiplicity; it indicates how many Cards a Deck has.
A multiplicity can be a simple number, like , a range, like or a star, which indicates
that a Deck can have any number of Cards.

There are no dependencies in this diagram. They would normally be shown with a dashed
arrow. Or if there are a lot of dependencies, they are sometimes omitted.

A more detailed diagram might show that a Deck actually contains a list of Cards, but
built-in types like list and dict are usually not included in class diagrams.

18.9 Debugging
Inheritance can make debugging difficult because when you invoke a method on an object,
it might be hard to figure out which method will be invoked.

Suppose you are writing a function that works with Hand objects. You would like it to
work with all kinds of Hands, like PokerHands, BridgeHands, etc. If you invoke a method
like , you might get the one defined in , but if any of the subclasses override
this method, you’ll get that version instead. This behavior is usually a good thing, but it
can be confusing.

Any time you are unsure about the flow of execution through your program, the sim-
plest solution is to add print statements at the beginning of the relevant methods. If

prints a message that says something like , then as
the program runs it traces the flow of execution.

As an alternative, you could use this function, which takes an object and a method name
(as a string) and returns the class that provides the definition of the method:

Here’s an example:

18.10. Data encapsulation 179

So the method for this Hand is the one in .

uses the method to get the list of class objects (types) that will be
searched for methods. “MRO” stands for “method resolution order”, which is the sequence
of classes Python searches to “resolve” a method name.

Here’s a design suggestion: when you override a method, the interface of the new method
should be the same as the old. It should take the same parameters, return the same type,
and obey the same preconditions and postconditions. If you follow this rule, you will find
that any function designed to work with an instance of a parent class, like a Deck, will also
work with instances of child classes like a Hand and PokerHand.

If you violate this rule, which is called the “Liskov substitution principle”, your code will
collapse like (sorry) a house of cards.

18.10 Data encapsulation

The previous chapters demonstrate a development plan we might call “object-oriented
design”. We identified objects we needed—like , and —and defined
classes to represent them. In each case there is an obvious correspondence between the
object and some entity in the real world (or at least a mathematical world).

But sometimes it is less obvious what objects you need and how they should interact. In
that case you need a different development plan. In the same way that we discovered
function interfaces by encapsulation and generalization, we can discover class interfaces
by data encapsulation.

Markov analysis, from Section 13.8, provides a good example. If you download my
code from , you’ll see that it uses two global
variables— and —that are read and written from several functions.

Because these variables are global, we can only run one analysis at a time. If we read two
texts, their prefixes and suffixes would be added to the same data structures (which makes
for some interesting generated text).

To run multiple analyses, and keep them separate, we can encapsulate the state of each
analysis in an object. Here’s what that looks like:

Next, we transform the functions into methods. For example, here’s :

http://thinkpython2.com/code/markov.py

180 Chapter 18. Inheritance

Transforming a program like this—changing the design without changing the behavior—is
another example of refactoring (see Section 4.7).

This example suggests a development plan for designing objects and methods:

1. Start by writing functions that read and write global variables (when necessary).

2. Once you get the program working, look for associations between global variables
and the functions that use them.

3. Encapsulate related variables as attributes of an object.

4. Transform the associated functions into methods of the new class.

As an exercise, download my Markov code from
, and follow the steps described above to encapsulate the global variables as at-

tributes of a new class called . Solution:
(note the capital M).

18.11 Glossary
encode: To represent one set of values using another set of values by constructing a map-

ping between them.

class attribute: An attribute associated with a class object. Class attributes are defined
inside a class definition but outside any method.

instance attribute: An attribute associated with an instance of a class.

veneer: A method or function that provides a different interface to another function with-
out doing much computation.

inheritance: The ability to define a new class that is a modified version of a previously
defined class.

parent class: The class from which a child class inherits.

child class: A new class created by inheriting from an existing class; also called a “sub-
class”.

IS-A relationship: A relationship between a child class and its parent class.

HAS-A relationship: A relationship between two classes where instances of one class con-
tain references to instances of the other.

dependency: A relationship between two classes where instances of one class use in-
stances of the other class, but do not store them as attributes.

http://thinkpython2.com/code/markov.py
http://thinkpython2.com/code/markov.py
http://thinkpython2.com/code/Markov.py
http://thinkpython2.com/code/Markov.py

18.12. Exercises 181

class diagram: A diagram that shows the classes in a program and the relationships be-
tween them.

multiplicity: A notation in a class diagram that shows, for a HAS-A relationship, how
many references there are to instances of another class.

data encapsulation: A program development plan that involves a prototype using global
variables and a final version that makes the global variables into instance attributes.

18.12 Exercises

Exercise 18.1. For the following program, draw a UML class diagram that shows these classes and
the relationships among them.

Exercise 18.2. Write a Deck method called that takes two parameters, the number of
hands and the number of cards per hand. It should create the appropriate number of Hand objects,
deal the appropriate number of cards per hand, and return a list of Hands.
Exercise 18.3. The following are the possible hands in poker, in increasing order of value and
decreasing order of probability:

pair: two cards with the same rank

two pair: two pairs of cards with the same rank

three of a kind: three cards with the same rank

straight: five cards with ranks in sequence (aces can be high or low, so is a straight
and so is , but is not.)

flush: five cards with the same suit

full house: three cards with one rank, two cards with another

182 Chapter 18. Inheritance

four of a kind: four cards with the same rank

straight flush: five cards in sequence (as defined above) and with the same suit

The goal of these exercises is to estimate the probability of drawing these various hands.

1. Download the following files from :
: A complete version of the , and classes in this chapter.

: An incomplete implementation of a class that represents a poker hand, and
some code that tests it.

2. If you run , it deals seven 7-card poker hands and checks to see if any of them
contains a flush. Read this code carefully before you go on.

3. Add methods to named , , etc. that return True or
False according to whether or not the hand meets the relevant criteria. Your code should
work correctly for “hands” that contain any number of cards (although 5 and 7 are the most
common sizes).

4. Write a method named that figures out the highest-value classification for a hand
and sets the attribute accordingly. For example, a 7-card hand might contain a flush
and a pair; it should be labeled “flush”.

5. When you are convinced that your classification methods are working, the next step is to esti-
mate the probabilities of the various hands. Write a function in that shuffles
a deck of cards, divides it into hands, classifies the hands, and counts the number of times
various classifications appear.

6. Print a table of the classifications and their probabilities. Run your program with larger and
larger numbers of hands until the output values converge to a reasonable degree of accu-
racy. Compare your results to the values at

.

Solution: .

http://thinkpython2.com/code
http://en.wikipedia.org/wiki/Hand_rankings
http://en.wikipedia.org/wiki/Hand_rankings
http://thinkpython2.com/code/PokerHandSoln.py

Chapter 19

The Goodies

One of my goals for this book has been to teach you as little Python as possible. When
there were two ways to do something, I picked one and avoided mentioning the other. Or
sometimes I put the second one into an exercise.

Now I want to go back for some of the good bits that got left behind. Python provides a
number of features that are not really necessary—you can write good code without them—
but with them you can sometimes write code that’s more concise, readable or efficient, and
sometimes all three.

19.1 Conditional expressions
We saw conditional statements in Section 5.4. Conditional statements are often used to
choose one of two values; for example:

This statement checks whether is positive. If so, it computes . If not,
would raise a ValueError. To avoid stopping the program, we generate a “NaN”, which is
a special floating-point value that represents “Not a Number”.

We can write this statement more concisely using a conditional expression:

You can almost read this line like English: “ gets log- if is greater than 0; otherwise it
gets NaN”.

Recursive functions can sometimes be rewritten using conditional expressions. For exam-
ple, here is a recursive version of :

184 Chapter 19. The Goodies

We can rewrite it like this:

Another use of conditional expressions is handling optional arguments. For example, here
is the init method from (see Exercise 17.2):

We can rewrite this one like this:

In general, you can replace a conditional statement with a conditional expression if both
branches contain simple expressions that are either returned or assigned to the same vari-
able.

19.2 List comprehensions

In Section 10.7 we saw the map and filter patterns. For example, this function takes a list
of strings, maps the string method to the elements, and returns a new list of
strings:

We can write this more concisely using a list comprehension:

The bracket operators indicate that we are constructing a new list. The expression inside
the brackets specifies the elements of the list, and the clause indicates what sequence
we are traversing.

The syntax of a list comprehension is a little awkward because the loop variable, in this
example, appears in the expression before we get to the definition.

List comprehensions can also be used for filtering. For example, this function selects only
the elements of that are upper case, and returns a new list:

19.3. Generator expressions 185

We can rewrite it using a list comprehension

List comprehensions are concise and easy to read, at least for simple expressions. And they
are usually faster than the equivalent for loops, sometimes much faster. So if you are mad
at me for not mentioning them earlier, I understand.

But, in my defense, list comprehensions are harder to debug because you can’t put a print
statement inside the loop. I suggest that you use them only if the computation is simple
enough that you are likely to get it right the first time. And for beginners that means never.

19.3 Generator expressions
Generator expressions are similar to list comprehensions, but with parentheses instead of
square brackets:

The result is a generator object that knows how to iterate through a sequence of values. But
unlike a list comprehension, it does not compute the values all at once; it waits to be asked.
The built-in function gets the next value from the generator:

When you get to the end of the sequence, raises a StopIteration exception. You can
also use a loop to iterate through the values:

The generator object keeps track of where it is in the sequence, so the loop picks up
where left off. Once the generator is exhausted, it continues to raise :

Generator expressions are often used with functions like , , and :

19.4 and
Python provides a built-in function, , that takes a sequence of boolean values and re-
turns if any of the values are . It works on lists:

186 Chapter 19. The Goodies

But it is often used with generator expressions:

That example isn’t very useful because it does the same thing as the operator. But we
could use to rewrite some of the search functions we wrote in Section 9.3. For example,
we could write like this:

The function almost reads like English, “ avoids if there are not any forbid-
den letters in .”

Using with a generator expression is efficient because it stops immediately if it finds a
value, so it doesn’t have to evaluate the whole sequence.

Python provides another built-in function, , that returns if every element of the
sequence is . As an exercise, use to re-write from Section 9.3.

19.5 Sets

In Section 13.6 I use dictionaries to find the words that appear in a document but not in a
word list. The function I wrote takes , which contains the words from the document as
keys, and , which contains the list of words. It returns a dictionary that contains the keys
from that are not in .

In all of these dictionaries, the values are because we never use them. As a result, we
waste some storage space.

Python provides another built-in type, called a , that behaves like a collection of dic-
tionary keys with no values. Adding elements to a set is fast; so is checking membership.
And sets provide methods and operators to compute common set operations.

For example, set subtraction is available as a method called or as an operator,
. So we can rewrite like this:

The result is a set instead of a dictionary, but for operations like iteration, the behavior is
the same.

Some of the exercises in this book can be done concisely and efficiently with sets. For
example, here is a solution to , from Exercise 10.7, that uses a dictionary:

19.6. Counters 187

When an element appears for the first time, it is added to the dictionary. If the same element
appears again, the function returns .

Using sets, we can write the same function like this:

An element can only appear in a set once, so if an element in appears more than once, the
set will be smaller than . If there are no duplicates, the set will be the same size as .

We can also use sets to do some of the exercises in Chapter 9. For example, here’s a version
of with a loop:

checks whether all letters in are in . We can rewrite it like this:

The operator checks whether one set is a subset or another, including the possibility that
they are equal, which is true if all the letters in appear in .

As an exercise, rewrite using sets.

19.6 Counters
A Counter is like a set, except that if an element appears more than once, the Counter
keeps track of how many times it appears. If you are familiar with the mathematical idea
of a multiset, a Counter is a natural way to represent a multiset.

Counter is defined in a standard module called , so you have to import it. You
can initialize a Counter with a string, list, or anything else that supports iteration:

Counters behave like dictionaries in many ways; they map from each key to the number of
times it appears. As in dictionaries, the keys have to be hashable.

Unlike dictionaries, Counters don’t raise an exception if you access an element that doesn’t
appear. Instead, they return 0:

188 Chapter 19. The Goodies

We can use Counters to rewrite from Exercise 10.6:

If two words are anagrams, they contain the same letters with the same counts, so their
Counters are equivalent.

Counters provide methods and operators to perform set-like operations, including ad-
dition, subtraction, union and intersection. And they provide an often-useful method,

, which returns a list of value-frequency pairs, sorted from most common to
least:

19.7 defaultdict

The module also provides , which is like a dictionary except that
if you access a key that doesn’t exist, it can generate a new value on the fly.

When you create a defaultdict, you provide a function that’s used to create new values. A
function used to create objects is sometimes called a factory. The built-in functions that
create lists, sets, and other types can be used as factories:

Notice that the argument is , which is a class object, not , which is a new list.
The function you provide doesn’t get called unless you access a key that doesn’t exist.

The new list, which we’re calling , is also added to the dictionary. So if we modify , the
change appears in :

If you are making a dictionary of lists, you can often write simpler code using .
In my solution to Exercise 12.2, which you can get from

, I make a dictionary that maps from a sorted string of letters to the list of
words that can be spelled with those letters. For example, maps to the list

.

Here’s the original code:

http://thinkpython2.com/code/anagram_sets.py
http://thinkpython2.com/code/anagram_sets.py

19.8. Named tuples 189

This can be simplified using , which you might have used in Exercise 11.2:

This solution has the drawback that it makes a new list every time, regardless of whether
it is needed. For lists, that’s no big deal, but if the factory function is complicated, it might
be.

We can avoid this problem and simplify the code using a :

My solution to Exercise 18.3, which you can download from
, uses in the function . This solu-

tion has the drawback of creating a object every time through the loop, whether it is
needed or not. As an exercise, rewrite it using a defaultdict.

19.8 Named tuples
Many simple objects are basically collections of related values. For example, the Point
object defined in Chapter 15 contains two numbers, and . When you define a class like
this, you usually start with an init method and a str method:

http://thinkpython2.com/code/PokerHandSoln.py
http://thinkpython2.com/code/PokerHandSoln.py

190 Chapter 19. The Goodies

This is a lot of code to convey a small amount of information. Python provides a more
concise way to say the same thing:

The first argument is the name of the class you want to create. The second is a list of the
attributes Point objects should have, as strings. The return value from is a class
object:

automatically provides methods like and so you don’t have to
write them.

To create a Point object, you use the Point class as a function:

The init method assigns the arguments to attributes using the names you provided. The
str method prints a representation of the Point object and its attributes.

You can access the elements of the named tuple by name:

But you can also treat a named tuple as a tuple:

Named tuples provide a quick way to define simple classes. The drawback is that simple
classes don’t always stay simple. You might decide later that you want to add methods
to a named tuple. In that case, you could define a new class that inherits from the named
tuple:

Or you could switch to a conventional class definition.

19.9 Gathering keyword args

In Section 12.4, we saw how to write a function that gathers its arguments into a tuple:

You can call this function with any number of positional arguments (that is, arguments that
don’t have keywords):

19.10. Glossary 191

But the operator doesn’t gather keyword arguments:

To gather keyword arguments, you can use the operator:

You can call the keyword gathering parameter anything you want, but is a common
choice. The result is a dictionary that maps keywords to values:

If you have a dictionary of keywords and values, you can use the scatter operator, to
call a function:

Without the scatter operator, the function would treat as a single positional argument, so
it would assign to and complain because there’s nothing to assign to :

When you are working with functions that have a large number of parameters, it is often
useful to create and pass around dictionaries that specify frequently used options.

19.10 Glossary
conditional expression: An expression that has one of two values, depending on a condi-

tion.

list comprehension: An expression with a loop in square brackets that yields a new
list.

generator expression: An expression with a loop in parentheses that yields a genera-
tor object.

multiset: A mathematical entity that represents a mapping between the elements of a set
and the number of times they appear.

factory: A function, usually passed as a parameter, used to create objects.

192 Chapter 19. The Goodies

19.11 Exercises

Exercise 19.1. The following is a function computes the binomial coefficient recursively.

Rewrite the body of the function using nested conditional expressions.

One note: this function is not very efficient because it ends up computing the same values over and
over. You could make it more efficient by memoizing (see Section 11.6). But you will find that it’s
harder to memoize if you write it using conditional expressions.

Appendix A

Debugging

When you are debugging, you should distinguish among different kinds of errors in order
to track them down more quickly:

• Syntax errors are discovered by the interpreter when it is translating the source code
into byte code. They indicate that there is something wrong with the structure of the
program. Example: Omitting the colon at the end of a statement generates the
somewhat redundant message .

• Runtime errors are produced by the interpreter if something goes wrong while the
program is running. Most runtime error messages include information about where
the error occurred and what functions were executing. Example: An infinite recur-
sion eventually causes the runtime error “maximum recursion depth exceeded”.

• Semantic errors are problems with a program that runs without producing error mes-
sages but doesn’t do the right thing. Example: An expression may not be evaluated
in the order you expect, yielding an incorrect result.

The first step in debugging is to figure out which kind of error you are dealing with. Al-
though the following sections are organized by error type, some techniques are applicable
in more than one situation.

A.1 Syntax errors

Syntax errors are usually easy to fix once you figure out what they are. Unfortunately,
the error messages are often not helpful. The most common messages are

and , neither of which is very informa-
tive.

On the other hand, the message does tell you where in the program the problem occurred.
Actually, it tells you where Python noticed a problem, which is not necessarily where the
error is. Sometimes the error is prior to the location of the error message, often on the
preceding line.

194 Appendix A. Debugging

If you are building the program incrementally, you should have a good idea about where
the error is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the book’s code
very carefully. Check every character. At the same time, remember that the book might be
wrong, so if you see something that looks like a syntax error, it might be.

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variable name.

2. Check that you have a colon at the end of the header of every compound statement,
including , , , and statements.

3. Make sure that any strings in the code have matching quotation marks. Make sure
that all quotation marks are “straight quotes”, not “curly quotes”.

4. If you have multiline strings with triple quotes (single or double), make sure you
have terminated the string properly. An unterminated string may cause an

error at the end of your program, or it may treat the following part of the
program as a string until it comes to the next string. In the second case, it might not
produce an error message at all!

5. An unclosed opening operator— , , or —makes Python continue with the next line
as part of the current statement. Generally, an error occurs almost immediately in the
next line.

6. Check for the classic instead of inside a conditional.

7. Check the indentation to make sure it lines up the way it is supposed to. Python
can handle space and tabs, but if you mix them it can cause problems. The best way
to avoid this problem is to use a text editor that knows about Python and generates
consistent indentation.

8. If you have non-ASCII characters in the code (including strings and comments), that
might cause a problem, although Python 3 usually handles non-ASCII characters. Be
careful if you paste in text from a web page or other source.

If nothing works, move on to the next section...

A.1.1 I keep making changes and it makes no difference.

If the interpreter says there is an error and you don’t see it, that might be because you and
the interpreter are not looking at the same code. Check your programming environment to
make sure that the program you are editing is the one Python is trying to run.

If you are not sure, try putting an obvious and deliberate syntax error at the beginning of
the program. Now run it again. If the interpreter doesn’t find the new error, you are not
running the new code.

There are a few likely culprits:

• You edited the file and forgot to save the changes before running it again. Some
programming environments do this for you, but some don’t.

A.2. Runtime errors 195

• You changed the name of the file, but you are still running the old name.

• Something in your development environment is configured incorrectly.

• If you are writing a module and using , make sure you don’t give your module
the same name as one of the standard Python modules.

• If you are using to read a module, remember that you have to restart the
interpreter or use to read a modified file. If you import the module again, it
doesn’t do anything.

If you get stuck and you can’t figure out what is going on, one approach is to start again
with a new program like “Hello, World!”, and make sure you can get a known program to
run. Then gradually add the pieces of the original program to the new one.

A.2 Runtime errors
Once your program is syntactically correct, Python can read it and at least start running it.
What could possibly go wrong?

A.2.1 My program does absolutely nothing.

This problem is most common when your file consists of functions and classes but does
not actually invoke a function to start execution. This may be intentional if you only plan
to import this module to supply classes and functions.

If it is not intentional, make sure there is a function call in the program, and make sure the
flow of execution reaches it (see “Flow of Execution” below).

A.2.2 My program hangs.

If a program stops and seems to be doing nothing, it is “hanging”. Often that means that it
is caught in an infinite loop or infinite recursion.

• If there is a particular loop that you suspect is the problem, add a statement
immediately before the loop that says “entering the loop” and another immediately
after that says “exiting the loop”.
Run the program. If you get the first message and not the second, you’ve got an
infinite loop. Go to the “Infinite Loop” section below.

• Most of the time, an infinite recursion will cause the program to run for a while and
then produce a “RuntimeError: Maximum recursion depth exceeded” error. If that
happens, go to the “Infinite Recursion” section below.
If you are not getting this error but you suspect there is a problem with a recursive
method or function, you can still use the techniques in the “Infinite Recursion” sec-
tion.

• If neither of those steps works, start testing other loops and other recursive functions
and methods.

• If that doesn’t work, then it is possible that you don’t understand the flow of execu-
tion in your program. Go to the “Flow of Execution” section below.

196 Appendix A. Debugging

Infinite Loop

If you think you have an infinite loop and you think you know what loop is causing the
problem, add a statement at the end of the loop that prints the values of the variables
in the condition and the value of the condition.

For example:

Now when you run the program, you will see three lines of output for each time through
the loop. The last time through the loop, the condition should be . If the loop keeps
going, you will be able to see the values of and , and you might figure out why they are
not being updated correctly.

Infinite Recursion

Most of the time, infinite recursion causes the program to run for a while and then produce
a error.

If you suspect that a function is causing an infinite recursion, make sure that there is a base
case. There should be some condition that causes the function to return without making a
recursive invocation. If not, you need to rethink the algorithm and identify a base case.

If there is a base case but the program doesn’t seem to be reaching it, add a state-
ment at the beginning of the function that prints the parameters. Now when you run the
program, you will see a few lines of output every time the function is invoked, and you
will see the parameter values. If the parameters are not moving toward the base case, you
will get some ideas about why not.

Flow of Execution

If you are not sure how the flow of execution is moving through your program, add
statements to the beginning of each function with a message like “entering function ”,
where is the name of the function.

Now when you run the program, it will print a trace of each function as it is invoked.

A.2.3 When I run the program I get an exception.

If something goes wrong during runtime, Python prints a message that includes the name
of the exception, the line of the program where the problem occurred, and a traceback.

The traceback identifies the function that is currently running, and then the function that
called it, and then the function that called that, and so on. In other words, it traces the

A.2. Runtime errors 197

sequence of function calls that got you to where you are, including the line number in your
file where each call occurred.

The first step is to examine the place in the program where the error occurred and see if
you can figure out what happened. These are some of the most common runtime errors:

NameError: You are trying to use a variable that doesn’t exist in the current environment.
Check if the name is spelled right, or at least consistently. And remember that local
variables are local; you cannot refer to them from outside the function where they are
defined.

TypeError: There are several possible causes:

• You are trying to use a value improperly. Example: indexing a string, list, or
tuple with something other than an integer.

• There is a mismatch between the items in a format string and the items passed
for conversion. This can happen if either the number of items does not match or
an invalid conversion is called for.

• You are passing the wrong number of arguments to a function. For methods,
look at the method definition and check that the first parameter is . Then
look at the method invocation; make sure you are invoking the method on an
object with the right type and providing the other arguments correctly.

KeyError: You are trying to access an element of a dictionary using a key that the dictio-
nary does not contain. If the keys are strings, remember that capitalization matters.

AttributeError: You are trying to access an attribute or method that does not exist. Check
the spelling! You can use the built-in function to list the attributes that do exist.

If an AttributeError indicates that an object has , that means that it is .
So the problem is not the attribute name, but the object.

The reason the object is none might be that you forgot to return a value from a func-
tion; if you get to the end of a function without hitting a statement, it returns

. Another common cause is using the result from a list method, like , that
returns .

IndexError: The index you are using to access a list, string, or tuple is greater than its
length minus one. Immediately before the site of the error, add a statement to
display the value of the index and the length of the array. Is the array the right size?
Is the index the right value?

The Python debugger () is useful for tracking down exceptions because it allows you to
examine the state of the program immediately before the error. You can read about at

.

A.2.4 I added so many statements I get inundated with output.

One of the problems with using statements for debugging is that you can end up
buried in output. There are two ways to proceed: simplify the output or simplify the
program.

https://docs.python.org/3/library/pdb.html

198 Appendix A. Debugging

To simplify the output, you can remove or comment out statements that aren’t help-
ing, or combine them, or format the output so it is easier to understand.

To simplify the program, there are several things you can do. First, scale down the problem
the program is working on. For example, if you are searching a list, search a small list. If
the program takes input from the user, give it the simplest input that causes the problem.

Second, clean up the program. Remove dead code and reorganize the program to make
it as easy to read as possible. For example, if you suspect that the problem is in a deeply
nested part of the program, try rewriting that part with simpler structure. If you suspect a
large function, try splitting it into smaller functions and testing them separately.

Often the process of finding the minimal test case leads you to the bug. If you find that
a program works in one situation but not in another, that gives you a clue about what is
going on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you make a change
that you think shouldn’t affect the program, and it does, that can tip you off.

A.3 Semantic errors

In some ways, semantic errors are the hardest to debug, because the interpreter provides
no information about what is wrong. Only you know what the program is supposed to do.

The first step is to make a connection between the program text and the behavior you are
seeing. You need a hypothesis about what the program is actually doing. One of the things
that makes that hard is that computers run so fast.

You will often wish that you could slow the program down to human speed, and with
some debuggers you can. But the time it takes to insert a few well-placed statements
is often short compared to setting up the debugger, inserting and removing breakpoints,
and “stepping” the program to where the error is occurring.

A.3.1 My program doesn’t work.

You should ask yourself these questions:

• Is there something the program was supposed to do but which doesn’t seem to be
happening? Find the section of the code that performs that function and make sure
it is executing when you think it should.

• Is something happening that shouldn’t? Find code in your program that performs
that function and see if it is executing when it shouldn’t.

• Is a section of code producing an effect that is not what you expected? Make sure that
you understand the code in question, especially if it involves functions or methods in
other Python modules. Read the documentation for the functions you call. Try them
out by writing simple test cases and checking the results.

A.3. Semantic errors 199

In order to program, you need a mental model of how programs work. If you write a
program that doesn’t do what you expect, often the problem is not in the program; it’s in
your mental model.

The best way to correct your mental model is to break the program into its components
(usually the functions and methods) and test each component independently. Once you
find the discrepancy between your model and reality, you can solve the problem.

Of course, you should be building and testing components as you develop the program.
If you encounter a problem, there should be only a small amount of new code that is not
known to be correct.

A.3.2 I’ve got a big hairy expression and it doesn’t do what I expect.

Writing complex expressions is fine as long as they are readable, but they can be hard to
debug. It is often a good idea to break a complex expression into a series of assignments to
temporary variables.

For example:

This can be rewritten as:

The explicit version is easier to read because the variable names provide additional docu-
mentation, and it is easier to debug because you can check the types of the intermediate
variables and display their values.

Another problem that can occur with big expressions is that the order of evaluation may
not be what you expect. For example, if you are translating the expression x

2p into Python,
you might write:

That is not correct because multiplication and division have the same precedence and are
evaluated from left to right. So this expression computes xp/2.

A good way to debug expressions is to add parentheses to make the order of evaluation
explicit:

Whenever you are not sure of the order of evaluation, use parentheses. Not only will the
program be correct (in the sense of doing what you intended), it will also be more readable
for other people who haven’t memorized the order of operations.

A.3.3 I’ve got a function that doesn’t return what I expect.

If you have a statement with a complex expression, you don’t have a chance to
print the result before returning. Again, you can use a temporary variable. For example,
instead of:

200 Appendix A. Debugging

you could write:

Now you have the opportunity to display the value of before returning.

A.3.4 I’m really, really stuck and I need help.

First, try getting away from the computer for a few minutes. Computers emit waves that
affect the brain, causing these symptoms:

• Frustration and rage.

• Superstitious beliefs (“the computer hates me”) and magical thinking (“the program
only works when I wear my hat backward”).

• Random walk programming (the attempt to program by writing every possible pro-
gram and choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, get up and go for a walk. When
you are calm, think about the program. What is it doing? What are some possible causes
of that behavior? When was the last time you had a working program, and what did you
do next?

Sometimes it just takes time to find a bug. I often find bugs when I am away from the
computer and let my mind wander. Some of the best places to find bugs are trains, showers,
and in bed, just before you fall asleep.

A.3.5 No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you work on a
program so long that you can’t see the error. You need a fresh pair of eyes.

Before you bring someone else in, make sure you are prepared. Your program should be as
simple as possible, and you should be working on the smallest input that causes the error.
You should have statements in the appropriate places (and the output they produce
should be comprehensible). You should understand the problem well enough to describe
it concisely.

When you bring someone in to help, be sure to give them the information they need:

• If there is an error message, what is it and what part of the program does it indicate?

• What was the last thing you did before this error occurred? What were the last lines
of code that you wrote, or what is the new test case that fails?

• What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you could have done to find it
faster. Next time you see something similar, you will be able to find the bug more quickly.

Remember, the goal is not just to make the program work. The goal is to learn how to make
the program work.

Appendix B

Analysis of Algorithms

This appendix is an edited excerpt from Think Complexity, by Allen B. Downey,
also published by O’Reilly Media (2012). When you are done with this book,
you might want to move on to that one.

Analysis of algorithms is a branch of computer science that studies the performance of
algorithms, especially their run time and space requirements. See

.

The practical goal of algorithm analysis is to predict the performance of different algo-
rithms in order to guide design decisions.

During the 2008 United States Presidential Campaign, candidate Barack Obama was asked
to perform an impromptu analysis when he visited Google. Chief executive Eric Schmidt
jokingly asked him for “the most efficient way to sort a million 32-bit integers.” Obama
had apparently been tipped off, because he quickly replied, “I think the bubble sort would
be the wrong way to go.” See .

This is true: bubble sort is conceptually simple but slow for large datasets. The an-
swer Schmidt was probably looking for is “radix sort” (

)1.

The goal of algorithm analysis is to make meaningful comparisons between algorithms,
but there are some problems:

• The relative performance of the algorithms might depend on characteristics of the
hardware, so one algorithm might be faster on Machine A, another on Machine B.
The general solution to this problem is to specify a machine model and analyze the
number of steps, or operations, an algorithm requires under a given model.

• Relative performance might depend on the details of the dataset. For example, some
sorting algorithms run faster if the data are already partially sorted; other algorithms

1 But if you get a question like this in an interview, I think a better answer is, “The fastest way to sort a million
integers is to use whatever sort function is provided by the language I’m using. Its performance is good enough
for the vast majority of applications, but if it turned out that my application was too slow, I would use a profiler
to see where the time was being spent. If it looked like a faster sort algorithm would have a significant effect on
performance, then I would look around for a good implementation of radix sort.”

http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://en.wikipedia.org/wiki/Analysis_of_algorithms
http://www.youtube.com/watch?v=k4RRi_ntQc8
http://en.wikipedia.org/wiki/Radix_sort
http://en.wikipedia.org/wiki/Radix_sort

202 Appendix B. Analysis of Algorithms

run slower in this case. A common way to avoid this problem is to analyze the worst
case scenario. It is sometimes useful to analyze average case performance, but that’s
usually harder, and it might not be obvious what set of cases to average over.

• Relative performance also depends on the size of the problem. A sorting algorithm
that is fast for small lists might be slow for long lists. The usual solution to this
problem is to express run time (or number of operations) as a function of problem
size, and group functions into categories depending on how quickly they grow as
problem size increases.

The good thing about this kind of comparison is that it lends itself to simple classification
of algorithms. For example, if I know that the run time of Algorithm A tends to be pro-
portional to the size of the input, n, and Algorithm B tends to be proportional to n2, then I
expect A to be faster than B, at least for large values of n.

This kind of analysis comes with some caveats, but we’ll get to that later.

B.1 Order of growth

Suppose you have analyzed two algorithms and expressed their run times in terms of the
size of the input: Algorithm A takes 100n + 1 steps to solve a problem with size n; Algo-
rithm B takes n2 + n + 1 steps.

The following table shows the run time of these algorithms for different problem sizes:

Input Run time of Run time of
size Algorithm A Algorithm B

10 1 001 111
100 10 001 10 101

1 000 100 001 1 001 001
10 000 1 000 001 > 1010

At n = 10, Algorithm A looks pretty bad; it takes almost 10 times longer than Algorithm
B. But for n = 100 they are about the same, and for larger values A is much better.

The fundamental reason is that for large values of n, any function that contains an n2 term
will grow faster than a function whose leading term is n. The leading term is the term with
the highest exponent.

For Algorithm A, the leading term has a large coefficient, 100, which is why B does better
than A for small n. But regardless of the coefficients, there will always be some value of n
where an2 > bn, for any values of a and b.

The same argument applies to the non-leading terms. Even if the run time of Algorithm A
were n + 1000000, it would still be better than Algorithm B for sufficiently large n.

In general, we expect an algorithm with a smaller leading term to be a better algorithm for
large problems, but for smaller problems, there may be a crossover point where another
algorithm is better. The location of the crossover point depends on the details of the algo-
rithms, the inputs, and the hardware, so it is usually ignored for purposes of algorithmic
analysis. But that doesn’t mean you can forget about it.

B.1. Order of growth 203

If two algorithms have the same leading order term, it is hard to say which is better; again,
the answer depends on the details. So for algorithmic analysis, functions with the same
leading term are considered equivalent, even if they have different coefficients.

An order of growth is a set of functions whose growth behavior is considered equivalent.
For example, 2n, 100n and n + 1 belong to the same order of growth, which is written O(n)
in Big-Oh notation and often called linear because every function in the set grows linearly
with n.

All functions with the leading term n2 belong to O(n2); they are called quadratic.

The following table shows some of the orders of growth that appear most commonly in
algorithmic analysis, in increasing order of badness.

Order of Name
growth

O(1) constant
O(logb n) logarithmic (for any b)

O(n) linear
O(n logb n) linearithmic

O(n2) quadratic
O(n3) cubic
O(cn) exponential (for any c)

For the logarithmic terms, the base of the logarithm doesn’t matter; changing bases is the
equivalent of multiplying by a constant, which doesn’t change the order of growth. Sim-
ilarly, all exponential functions belong to the same order of growth regardless of the base
of the exponent. Exponential functions grow very quickly, so exponential algorithms are
only useful for small problems.
Exercise B.1. Read the Wikipedia page on Big-Oh notation at

and answer the following questions:

1. What is the order of growth of n3 + n2? What about 1000000n3 + n2? What about n3 +
1000000n2?

2. What is the order of growth of (n2 + n) · (n + 1)? Before you start multiplying, remember
that you only need the leading term.

3. If f is in O(g), for some unspecified function g, what can we say about a f + b?

4. If f1 and f2 are in O(g), what can we say about f1 + f2?

5. If f1 is in O(g) and f2 is in O(h), what can we say about f1 + f2?

6. If f1 is in O(g) and f2 is O(h), what can we say about f1 · f2?

Programmers who care about performance often find this kind of analysis hard to swal-
low. They have a point: sometimes the coefficients and the non-leading terms make a
real difference. Sometimes the details of the hardware, the programming language, and
the characteristics of the input make a big difference. And for small problems asymptotic
behavior is irrelevant.

But if you keep those caveats in mind, algorithmic analysis is a useful tool. At least for
large problems, the “better” algorithm is usually better, and sometimes it is much better.
The difference between two algorithms with the same order of growth is usually a constant
factor, but the difference between a good algorithm and a bad algorithm is unbounded!

http://en.wikipedia.org/wiki/Big_O_notation
http://en.wikipedia.org/wiki/Big_O_notation

204 Appendix B. Analysis of Algorithms

B.2 Analysis of basic Python operations
In Python, most arithmetic operations are constant time; multiplication usually takes
longer than addition and subtraction, and division takes even longer, but these run times
don’t depend on the magnitude of the operands. Very large integers are an exception; in
that case the run time increases with the number of digits.

Indexing operations—reading or writing elements in a sequence or dictionary—are also
constant time, regardless of the size of the data structure.

A loop that traverses a sequence or dictionary is usually linear, as long as all of the
operations in the body of the loop are constant time. For example, adding up the elements
of a list is linear:

The built-in function is also linear because it does the same thing, but it tends to be
faster because it is a more efficient implementation; in the language of algorithmic analysis,
it has a smaller leading coefficient.

As a rule of thumb, if the body of a loop is in O(na) then the whole loop is in O(na+1). The
exception is if you can show that the loop exits after a constant number of iterations. If a
loop runs k times regardless of n, then the loop is in O(na), even for large k.

Multiplying by k doesn’t change the order of growth, but neither does dividing. So if the
body of a loop is in O(na) and it runs n/k times, the loop is in O(na+1), even for large k.

Most string and tuple operations are linear, except indexing and , which are constant
time. The built-in functions and are linear. The run-time of a slice operation is
proportional to the length of the output, but independent of the size of the input.

String concatenation is linear; the run time depends on the sum of the lengths of the
operands.

All string methods are linear, but if the lengths of the strings are bounded by a constant—
for example, operations on single characters—they are considered constant time. The
string method is linear; the run time depends on the total length of the strings.

Most list methods are linear, but there are some exceptions:

• Adding an element to the end of a list is constant time on average; when it runs
out of room it occasionally gets copied to a bigger location, but the total time for n
operations is O(n), so the average time for each operation is O(1).

• Removing an element from the end of a list is constant time.

• Sorting is O(n log n).

Most dictionary operations and methods are constant time, but there are some exceptions:

• The run time of is proportional to the size of the dictionary passed as a pa-
rameter, not the dictionary being updated.

• , and are constant time because they return iterators. But if you
loop through the iterators, the loop will be linear.

B.3. Analysis of search algorithms 205

The performance of dictionaries is one of the minor miracles of computer science. We will
see how they work in Section B.4.
Exercise B.2. Read the Wikipedia page on sorting algorithms at

and answer the following questions:

1. What is a “comparison sort?” What is the best worst-case order of growth for a comparison
sort? What is the best worst-case order of growth for any sort algorithm?

2. What is the order of growth of bubble sort, and why does Barack Obama think it is “the wrong
way to go?”

3. What is the order of growth of radix sort? What preconditions do we need to use it?

4. What is a stable sort and why might it matter in practice?

5. What is the worst sorting algorithm (that has a name)?

6. What sort algorithm does the C library use? What sort algorithm does Python use? Are these
algorithms stable? You might have to Google around to find these answers.

7. Many of the non-comparison sorts are linear, so why does does Python use an O(n log n)
comparison sort?

B.3 Analysis of search algorithms

A search is an algorithm that takes a collection and a target item and determines whether
the target is in the collection, often returning the index of the target.

The simplest search algorithm is a “linear search”, which traverses the items of the collec-
tion in order, stopping if it finds the target. In the worst case it has to traverse the entire
collection, so the run time is linear.

The operator for sequences uses a linear search; so do string methods like and
.

If the elements of the sequence are in order, you can use a bisection search, which is
O(log n). Bisection search is similar to the algorithm you might use to look a word up
in a dictionary (a paper dictionary, not the data structure). Instead of starting at the be-
ginning and checking each item in order, you start with the item in the middle and check
whether the word you are looking for comes before or after. If it comes before, then you
search the first half of the sequence. Otherwise you search the second half. Either way, you
cut the number of remaining items in half.

If the sequence has 1,000,000 items, it will take about 20 steps to find the word or conclude
that it’s not there. So that’s about 50,000 times faster than a linear search.

Bisection search can be much faster than linear search, but it requires the sequence to be in
order, which might require extra work.

There is another data structure, called a hashtable that is even faster—it can do a search
in constant time—and it doesn’t require the items to be sorted. Python dictionaries are
implemented using hashtables, which is why most dictionary operations, including the
operator, are constant time.

http://en.wikipedia.org/wiki/Sorting_algorithm
http://en.wikipedia.org/wiki/Sorting_algorithm

206 Appendix B. Analysis of Algorithms

B.4 Hashtables

To explain how hashtables work and why their performance is so good, I start with a simple
implementation of a map and gradually improve it until it’s a hashtable.

I use Python to demonstrate these implementations, but in real life you wouldn’t write
code like this in Python; you would just use a dictionary! So for the rest of this chapter, you
have to imagine that dictionaries don’t exist and you want to implement a data structure
that maps from keys to values. The operations you have to implement are:

: Add a new item that maps from key to value . With a Python dictionary, ,
this operation is written .

: Look up and return the value that corresponds to key . With a Python dictionary,
, this operation is written or .

For now, I assume that each key only appears once. The simplest implementation of this
interface uses a list of tuples, where each tuple is a key-value pair.

appends a key-value tuple to the list of items, which takes constant time.

uses a loop to search the list: if it finds the target key it returns the corresponding
value; otherwise it raises a . So is linear.

An alternative is to keep the list sorted by key. Then could use a bisection search, which
is O(log n). But inserting a new item in the middle of a list is linear, so this might not be the
best option. There are other data structures that can implement and in log time,
but that’s still not as good as constant time, so let’s move on.

One way to improve is to break the list of key-value pairs into smaller lists.
Here’s an implementation called , which is a list of 100 LinearMaps. As we’ll
see in a second, the order of growth for is still linear, but is a step on the
path toward hashtables:

B.4. Hashtables 207

makes a list of s.

is used by and to figure out which map to put the new item in, or which
map to search.

uses the built-in function , which takes almost any Python object and returns
an integer. A limitation of this implementation is that it only works with hashable keys.
Mutable types like lists and dictionaries are unhashable.

Hashable objects that are considered equivalent return the same hash value, but the con-
verse is not necessarily true: two objects with different values can return the same hash
value.

uses the modulus operator to wrap the hash values into the range from 0 to
, so the result is a legal index into the list. Of course, this means that many

different hash values will wrap onto the same index. But if the hash function spreads things
out pretty evenly (which is what hash functions are designed to do), then we expect n/100
items per LinearMap.

Since the run time of is proportional to the number of items, we expect
BetterMap to be about 100 times faster than LinearMap. The order of growth is still linear,
but the leading coefficient is smaller. That’s nice, but still not as good as a hashtable.

Here (finally) is the crucial idea that makes hashtables fast: if you can keep the maximum
length of the LinearMaps bounded, is constant time. All you have to do is
keep track of the number of items and when the number of items per LinearMap exceeds
a threshold, resize the hashtable by adding more LinearMaps.

Here is an implementation of a hashtable:

208 Appendix B. Analysis of Algorithms

Each contains a ; starts with just 2 LinearMaps and initializes
, which keeps track of the number of items.

just dispatches to . The real work happens in , which checks the number
of items and the size of the : if they are equal, the average number of items per
LinearMap is 1, so it calls .

make a new , twice as big as the previous one, and then “rehashes” the
items from the old map to the new.

Rehashing is necessary because changing the number of LinearMaps changes the denomi-
nator of the modulus operator in . That means that some objects that used to hash
into the same LinearMap will get split up (which is what we wanted, right?).

Rehashing is linear, so is linear, which might seem bad, since I promised that
would be constant time. But remember that we don’t have to resize every time, so is
usually constant time and only occasionally linear. The total amount of work to run n
times is proportional to n, so the average time of each is constant time!

To see how this works, think about starting with an empty HashTable and adding a se-
quence of items. We start with 2 LinearMaps, so the first 2 adds are fast (no resizing re-
quired). Let’s say that they take one unit of work each. The next add requires a resize, so
we have to rehash the first two items (let’s call that 2 more units of work) and then add the
third item (one more unit). Adding the next item costs 1 unit, so the total so far is 6 units
of work for 4 items.

The next costs 5 units, but the next three are only one unit each, so the total is 14 units
for the first 8 adds.

The next costs 9 units, but then we can add 7 more before the next resize, so the total is
30 units for the first 16 adds.

After 32 adds, the total cost is 62 units, and I hope you are starting to see a pattern. After n
adds, where n is a power of two, the total cost is 2n � 2 units, so the average work per add
is a little less than 2 units. When n is a power of two, that’s the best case; for other values of
n the average work is a little higher, but that’s not important. The important thing is that it
is O(1).

Figure B.1 shows how this works graphically. Each block represents a unit of work. The
columns show the total work for each add in order from left to right: the first two cost
1 units, the third costs 3 units, etc.

B.5. Glossary 209

Figure B.1: The cost of a hashtable add.

The extra work of rehashing appears as a sequence of increasingly tall towers with increas-
ing space between them. Now if you knock over the towers, spreading the cost of resizing
over all adds, you can see graphically that the total cost after n adds is 2n � 2.

An important feature of this algorithm is that when we resize the HashTable it grows
geometrically; that is, we multiply the size by a constant. If you increase the size
arithmetically—adding a fixed number each time—the average time per is linear.

You can download my implementation of HashMap from
, but remember that there is no reason to use it; if you want a map, just use a

Python dictionary.

B.5 Glossary
analysis of algorithms: A way to compare algorithms in terms of their run time and/or

space requirements.

machine model: A simplified representation of a computer used to describe algorithms.

worst case: The input that makes a given algorithm run slowest (or require the most space.

leading term: In a polynomial, the term with the highest exponent.

crossover point: The problem size where two algorithms require the same run time or
space.

order of growth: A set of functions that all grow in a way considered equivalent for pur-
poses of analysis of algorithms. For example, all functions that grow linearly belong
to the same order of growth.

Big-Oh notation: Notation for representing an order of growth; for example, O(n) repre-
sents the set of functions that grow linearly.

linear: An algorithm whose run time is proportional to problem size, at least for large
problem sizes.

quadratic: An algorithm whose run time is proportional to n2, where n is a measure of
problem size.

search: The problem of locating an element of a collection (like a list or dictionary) or
determining that it is not present.

http://thinkpython2.com/code/Map.py
http://thinkpython2.com/code/Map.py

210 Appendix B. Analysis of Algorithms

hashtable: A data structure that represents a collection of key-value pairs and performs
search in constant time.

Index

abecedarian, 73, 84
abs function, 52
absolute path, 139, 145
access, 90
accumulator, 100

histogram, 127
list, 93
string, 175
sum, 93

Ackermann function, 61, 113
add method, 165
addition with carrying, 68
algorithm, 67, 69, 130, 201

MD5, 146
square root, 69

aliasing, 95, 96, 100, 149, 151, 170
copying to avoid, 99

all, 186
alphabet, 37
alternative execution, 41
ambiguity, 5
anagram, 101
anagram set, 123, 145
analysis of algorithms, 201, 209
analysis of primitives, 204
and operator, 40
any, 185
append method, 92, 97, 101, 174, 175
arc function, 31
Archimedian spiral, 38
argument, 17, 19, 21, 22, 26, 97

gather, 118
keyword, 33, 36, 191
list, 97
optional, 76, 79, 95, 107, 184
positional, 164, 169, 190
variable-length tuple, 118

argument scatter, 118
arithmetic operator, 3
assert statement, 159, 160
assignment, 14, 63, 89

augmented, 93, 100
item, 74, 90, 116
tuple, 116, 117, 119, 122

assignment statement, 9
attribute, 153, 169

__dict__, 168
class, 172, 180
initializing, 168
instance, 148, 153, 172, 180

AttributeError, 152, 197
augmented assignment, 93, 100
Austin, Jane, 127
average case, 202
average cost, 208

badness, 203
base case, 44, 47
benchmarking, 133, 134

, 206
big, hairy expression, 199
Big-Oh notation, 209
big-oh notation, 203
binary search, 101
bingo, 123
birthday, 160
birthday paradox, 101
bisect module, 101
bisection search, 101, 205
bisection, debugging by, 68
bitwise operator, 3
body, 19, 26, 65
bool type, 40
boolean expression, 40, 47
boolean function, 54
boolean operator, 76
borrowing, subtraction with, 68, 159
bounded, 207
bracket

squiggly, 103
bracket operator, 71, 90, 116
branch, 41, 47

212 Index

break statement, 66
bubble sort, 201
bug, 6, 7, 13

worst, 170
built-in function

any, 185, 186
bytes object, 141, 145

calculator, 8, 15
call graph, 109, 112
Car Talk, 88, 113, 124
Card class, 172
card, playing, 171
carrying, addition with, 68, 156, 158
catch, 145
chained conditional, 41, 47
character, 71
checksum, 143, 146
child class, 176, 180
choice function, 126
circle function, 31
circular definition, 55
class, 4, 147, 153

Card, 172
child, 176, 180
Deck, 174
Hand, 176
Kangaroo, 170
parent, 176
Point, 148, 165
Rectangle, 149
Time, 155

class attribute, 172, 180
class definition, 147
class diagram, 177, 181
class object, 148, 153, 190
close method, 138, 141, 143
__cmp__ method, 173
Collatz conjecture, 65
collections, 187, 188, 190
colon, 19, 194
comment, 13, 15
commutativity, 13, 167
compare function, 52
comparing algorithms, 201
comparison

string, 77
tuple, 116, 174

comparison sort, 205
composition, 19, 22, 26, 54, 174

compound statement, 41, 47
concatenation, 12, 14, 22, 73, 74, 95

list, 91, 97, 101
condition, 41, 47, 65, 196
conditional, 194

chained, 41, 47
nested, 42, 47

conditional execution, 41
conditional expression, 183, 191
conditional statement, 41, 47, 55, 184
consistency check, 111, 158
constant time, 208
contributors, vii
conversion

type, 17
copy

deep, 152
shallow, 152
slice, 74, 92
to avoid aliasing, 99

copy module, 151
copying objects, 151
count method, 79
Counter, 187
counter, 75, 79, 104, 111
counting and looping, 75
Creative Commons, vi
crossover point, 202, 209
crosswords, 83
cumulative sum, 100

data encapsulation, 179, 181
data structure, 122, 123, 132
database, 141, 145
database object, 141
datetime module, 160
dbm module, 141
dead code, 52, 60, 198
debugger (pdb), 197
debugging, 6, 7, 13, 36, 46, 59, 77, 87, 98, 111,

122, 133, 144, 152, 159, 168, 178,
185, 193

by bisection, 68
emotional response, 6, 200
experimental, 25
rubber duck, 134
superstition, 200

deck, 171
Deck class, 174
deck, playing cards, 174

Index 213

declaration, 110, 112
decrement, 64, 69
deep copy, 152, 153
deepcopy function, 152
def keyword, 19
default value, 129, 134, 165

avoiding mutable, 170
defaultdict, 188
definition

circular, 55
class, 147
function, 19
recursive, 124

del operator, 94
deletion, element of list, 94
delimiter, 95, 100
designed development, 160
deterministic, 126, 134
development plan, 36

data encapsulation, 179, 181
designed, 158
encapsulation and generalization, 35
incremental, 52, 193
prototype and patch, 156, 158
random walk programming, 134, 200
reduction, 85, 87

diagram
call graph, 112
class, 177, 181
object, 148, 150, 152, 153, 155, 173
stack, 23, 97
state, 9, 63, 78, 90, 96, 108, 120, 148, 150,

152, 155, 173
__dict__ attribute, 168
dict function, 103
dictionary, 103, 112, 120, 197

initialize, 120
invert, 107
lookup, 106
looping with, 106
reverse lookup, 106
subtraction, 129
traversal, 120, 168

dictionary methods, 204
dbm module, 141

dictionary subtraction, 186
diff, 146
Dijkstra, Edsger, 87
dir function, 197
directory, 139, 145

walk, 140
working, 139

dispatch
type-based, 167

dispatch, type-based, 166
divisibility, 39
division

floating-point, 39
floor, 39, 46, 47

divmod, 117, 158
docstring, 35, 37, 148
dot notation, 18, 26, 76, 148, 162, 172
Double Day, 160
double letters, 88
Doyle, Arthur Conan, 25
duplicate, 101, 113, 146, 187

element, 89, 100
element deletion, 94
elif keyword, 42
Elkner, Jeff, v, vi
ellipses, 19
else keyword, 41
email address, 117
embedded object, 150, 153, 170

copying, 152
emotional debugging, 6, 200
empty list, 89
empty string, 79, 95
encapsulation, 32, 36, 54, 69, 75, 177
encode, 171, 180
encrypt, 171
end of line character, 144
enumerate function, 119
enumerate object, 119
epsilon, 67
equality and assignment, 63
equivalence, 96, 152
equivalent, 100
error

runtime, 14, 44, 46, 193
semantic, 14, 193, 198
shape, 122
syntax, 13, 193

error checking, 58
error message, 7, 13, 14, 193
eval function, 69
evaluate, 10
exception, 14, 15, 193, 196

AttributeError, 152, 197

214 Index

IndexError, 72, 78, 90, 197
IOError, 140
KeyError, 104, 197
LookupError, 107
NameError, 22, 197
OverflowError, 46
RuntimeError, 45
StopIteration, 185
SyntaxError, 19
TypeError, 72, 74, 108, 116, 118, 139, 164,

197
UnboundLocalError, 110
ValueError, 46, 117

exception, catching, 140
execute, 11, 14
exists function, 139
experimental debugging, 25, 134
exponent, 202
exponential growth, 203
expression, 10, 14

big and hairy, 199
boolean, 40, 47
conditional, 183, 191
generator, 185, 186, 191

extend method, 92

factorial, 183
factorial function, 56, 58
factory, 191
factory function, 188, 189
False special value, 40
Fermat’s Last Theorem, 48
fibonacci function, 57, 109
file, 137

permission, 140
reading and writing, 137

file object, 83, 87
filename, 139
filter pattern, 93, 100, 184
find function, 74
flag, 110, 112
float function, 17
float type, 4
floating-point, 4, 7, 67, 183
floating-point division, 39
floor division, 39, 46, 47
flow of execution, 21, 26, 58, 59, 65, 178, 196
flower, 37
folder, 139
for loop, 30, 44, 72, 91, 119, 184

formal language, 4, 7
format operator, 138, 145, 197
format sequence, 138, 145
format string, 138, 145
frame, 23, 26, 44, 56, 109
Free Documentation License, GNU, v, vi
frequency, 105

letter, 123
word, 125, 134

fruitful function, 24, 26
frustration, 200
function, 3, 17, 19, 25, 161

abs, 52
ack, 61, 113
arc, 31
choice, 126
circle, 31
compare, 52
deepcopy, 152
dict, 103
dir, 197
enumerate, 119
eval, 69
exists, 139
factorial, 56, 183
fibonacci, 57, 109
find, 74
float, 17
getattr, 168
getcwd, 139
hasattr, 153, 168
input, 45
int, 17
isinstance, 58, 153, 166
len, 26, 72, 104
list, 94
log, 18
max, 117, 118
min, 117, 118
open, 83, 84, 137, 140, 141
polygon, 31
popen, 142
programmer defined, 22, 129
randint, 101, 126
random, 126
recursive, 43
reload, 144, 195
repr, 144
reversed, 121
shuffle, 175

Index 215

sorted, 99, 106, 121
sqrt, 18, 53
str, 18
sum, 118, 185
tuple, 115
type, 153
zip, 118

function argument, 21
function call, 17, 26
function composition, 54
function definition, 19, 20, 25
function frame, 23, 26, 44, 56, 109
function object, 27
function parameter, 21
function syntax, 162
function type, 20

modifier, 157
pure, 156

function, fruitful, 24
function, math, 18
function, reasons for, 24
function, trigonometric, 18
function, tuple as return value, 117
function, void, 24
functional programming style, 158, 160

gamma function, 58
gather, 118, 123, 190
GCD (greatest common divisor), 61
generalization, 32, 36, 85, 159
generator expression, 185, 186, 191
generator object, 185
geometric resizing, 209
get method, 105
getattr function, 168
getcwd function, 139
global statement, 110, 112
global variable, 110, 112

update, 110
GNU Free Documentation License, v, vi
greatest common divisor (GCD), 61
grid, 27
guardian pattern, 59, 60, 78

Hand class, 176
hanging, 195
HAS-A relationship, 177, 180
hasattr function, 153, 168
hash function, 108, 112, 207
hashable, 108, 112, 120

HashMap, 207
hashtable, 112, 206, 210
header, 19, 25, 194
Hello, World, 3
hexadecimal, 148
high-level language, 6
histogram, 105

random choice, 126, 130
word frequencies, 127

Holmes, Sherlock, 25
homophone, 113
hypotenuse, 54

identical, 100
identity, 96, 152
if statement, 41
immutability, 74, 79, 97, 108, 115, 121
implementation, 105, 112, 132, 169
import statement, 26, 144

operator, 205
in operator, 76, 85, 90, 104
increment, 64, 69, 157, 163
incremental development, 60, 193
indentation, 19, 162, 194
index, 71, 78, 79, 90, 103, 197

looping with, 86, 91
negative, 72
slice, 73, 91
starting at zero, 71, 90

IndexError, 72, 78, 90, 197
indexing, 204
infinite loop, 65, 69, 195, 196
infinite recursion, 44, 47, 58, 195, 196
information hiding, 169
inheritance, 176, 178, 180, 190
init method, 164, 168, 172, 174, 176
initialization

variable, 69
initialization (before update), 64
input function, 45
instance, 148, 153

as argument, 149
as return value, 150

instance attribute, 148, 153, 172, 180
instantiate, 153
instantiation, 148
int function, 17
int type, 4
integer, 4, 7
interactive mode, 11, 14, 24

216 Index

interface, 33, 36, 169, 179
interlocking words, 101
interpret, 6
interpreter, 2
invariant, 159, 160
invert dictionary, 107
invocation, 76, 79
IOError, 140
is operator, 95, 152
IS-A relationship, 177, 180
isinstance function, 58, 153, 166
item, 74, 79, 89, 103

dictionary, 112
item assignment, 74, 90, 116
item update, 91
items method, 120
iteration, 64, 69
iterator, 119–121, 123, 204

, 204
join method, 95, 175

Kangaroo class, 170
key, 103, 112
key-value pair, 103, 112, 120
keyboard input, 45
KeyError, 104, 197

, 206
keyword, 10, 14, 194

def, 19
elif, 42
else, 41

keyword argument, 33, 36, 191
Koch curve, 49

language
formal, 4
natural, 4
safe, 14
Turing complete, 55

leading coefficient, 202
leading term, 202, 209
leap of faith, 57
len function, 26, 72, 104
letter frequency, 123
letter rotation, 80, 113
linear, 209
linear growth, 203
linear search, 205

, 206
Linux, 25

lipogram, 84
Liskov substitution principle, 179
list, 89, 94, 100, 121, 184

as argument, 97
concatenation, 91, 97, 101
copy, 92
element, 90
empty, 89
function, 94
index, 90
membership, 90
method, 92
nested, 89, 91
of objects, 174
of tuples, 119
operation, 91
repetition, 91
slice, 91
traversal, 91

list comprehension, 184, 191
list methods, 204
literalness, 5
local variable, 22, 26
log function, 18
logarithm, 135
logarithmic growth, 203
logical operator, 40
lookup, 112
lookup, dictionary, 106
LookupError, 107
loop, 31, 36, 65, 119

condition, 196
for, 30, 44, 72, 91
infinite, 65, 196
nested, 174
traversal, 72
while, 64

loop variable, 184
looping

with dictionaries, 106
with indices, 86, 91
with strings, 75

looping and counting, 75
low-level language, 6
ls (Unix command), 142

machine model, 201, 209
maintainable, 169
map pattern, 93, 100
map to, 171

Index 217

mapping, 112, 131
Markov analysis, 130
mash-up, 132
math function, 18
matplotlib, 135
max function, 117, 118
McCloskey, Robert, 73
md5, 143
MD5 algorithm, 146
md5sum, 146
membership

binary search, 101
bisection search, 101
dictionary, 104
list, 90
set, 113

memo, 109, 112
mental model, 199
metaphor, method invocation, 163
metathesis, 123
method, 36, 75, 161, 169

__cmp__, 173
__str__, 165, 174
add, 165
append, 92, 97, 174, 175
close, 138, 141, 143
count, 79
extend, 92
get, 105
init, 164, 172, 174, 176
items, 120
join, 95, 175
mro, 179
pop, 94, 175
radd, 167
read, 143
readline, 83, 143
remove, 94
replace, 125
setdefault, 113
sort, 92, 99, 176
split, 95, 117
string, 79
strip, 84, 125
translate, 125
update, 120
values, 104
void, 92

method append, 101
method resolution order, 179

method syntax, 162
method, list, 92
Meyers, Chris, vi
min function, 117, 118
Moby Project, 83
model, mental, 199
modifier, 157, 160
module, 18, 26

bisect, 101
collections, 187, 188, 190
copy, 151
datetime, 160
dbm, 141
os, 139
pickle, 137, 142
pprint, 112
profile, 133
random, 101, 126, 175
reload, 144, 195
shelve, 142
string, 125
structshape, 122
time, 101

module object, 18, 143
module, writing, 143
modulus operator, 39, 47
Monty Python and the Holy Grail, 156
MP3, 146
mro method, 179
multiline string, 35, 194
multiplicity (in class diagram), 178, 181
multiset, 187
mutability, 74, 90, 92, 96, 111, 115, 121, 151
mutable object, as default value, 170

namedtuple, 190
NameError, 22, 197
NaN, 183
natural language, 4, 7
negative index, 72
nested conditional, 42, 47
nested list, 89, 91, 100
newline, 45, 175
Newton’s method, 66
None special value, 24, 26, 52, 92, 94
NoneType type, 24
not operator, 40
number, random, 126

Obama, Barack, 201

218 Index

object, 74, 79, 95, 96, 100
bytes, 141, 145
class, 147, 148, 153, 190
copying, 151
Counter, 187
database, 141
defaultdict, 188
embedded, 150, 153, 170
enumerate, 119
file, 83, 87
function, 27
generator, 185
module, 143
mutable, 151
namedtuple, 190
pipe, 145
printing, 162
set, 186
zip, 123

object diagram, 148, 150, 152, 153, 155, 173
object-oriented design, 169
object-oriented language, 169
object-oriented programming, 147, 161, 169,

176
odometer, 88
Olin College, v
open function, 83, 84, 137, 140, 141
operand, 14
operator, 7

and, 40
arithmetic, 3
bitwise, 3
boolean, 76
bracket, 71, 90, 116
del, 94
format, 138, 145, 197
in, 76, 85, 90, 104
is, 95, 152
logical, 40
modulus, 39, 47
not, 40
or, 40
overloading, 169
relational, 40, 173
slice, 73, 79, 91, 98, 116
string, 12
update, 93

operator overloading, 166, 173
optional argument, 76, 79, 95, 107, 184
optional parameter, 129, 165

or operator, 40
order of growth, 202, 209
order of operations, 12, 14, 199
os module, 139
other (parameter name), 164
OverflowError, 46
overloading, 169
override, 129, 134, 165, 173, 176, 179

palindrome, 61, 80, 86, 88
parameter, 21, 23, 26, 97

gather, 118
optional, 129, 165
other, 164
self, 163

parent class, 176, 180
parentheses

argument in, 17
empty, 19, 76
parameters in, 21, 22
parent class in, 176
tuples in, 115

parse, 5, 7
pass statement, 41
path, 139, 145

absolute, 139
relative, 139

pattern
filter, 93, 100, 184
guardian, 59, 60, 78
map, 93, 100
reduce, 93, 100
search, 75, 79, 85, 107, 186
swap, 116

pdb (Python debugger), 197
PEMDAS, 12
permission, file, 140
persistence, 137, 145
pi, 18, 70
pickle module, 137, 142
pickling, 142
pie, 37
pipe, 142
pipe object, 145
plain text, 83, 125
planned development, 158
poetry, 5
Point class, 148, 165
point, mathematical, 147
poker, 171, 181

Index 219

polygon function, 31
polymorphism, 168, 169
pop method, 94, 175
popen function, 142
portability, 6
positional argument, 164, 169, 190
postcondition, 36, 59, 179
pprint module, 112
precedence, 199
precondition, 36, 37, 59, 179
prefix, 131
pretty print, 112
print function, 3
print statement, 3, 7, 165, 197
problem solving, 1, 6
profile module, 133
program, 1, 6
program testing, 87
programmer-defined function, 22, 129
programmer-defined type, 147, 153, 155,

162, 165, 173
Project Gutenberg, 125
prompt, 2, 6, 45
prose, 5
prototype and patch, 156, 158, 160
pseudorandom, 126, 134
pure function, 156, 160
Puzzler, 88, 113, 124
Pythagorean theorem, 52
Python

running, 2
Python 2, 2, 3, 33, 40, 45
Python in a browser, 2
PythonAnywhere, 2

quadratic, 209
quadratic growth, 203
quotation mark, 3, 4, 35, 74, 194

radd method, 167
radian, 18
radix sort, 201
rage, 200
raise statement, 107, 112, 159
Ramanujan, Srinivasa, 70
randint function, 101, 126
random function, 126
random module, 101, 126, 175
random number, 126
random text, 131

random walk programming, 134, 200
rank, 171
read method, 143
readline method, 83, 143
reassignment, 63, 68, 90, 110
Rectangle class, 149
recursion, 43, 47, 55, 57

base case, 44
infinite, 44, 58, 196

recursive definition, 56, 124
red-black tree, 206
reduce pattern, 93, 100
reducible word, 113, 124
reduction to a previously solved problem,

85
reduction to a previously solved problem,

87
redundancy, 5
refactoring, 34–36, 180
reference, 96, 97, 100

aliasing, 96
rehashing, 208
relational operator, 40, 173
relative path, 139, 145
reload function, 144, 195
remove method, 94
repetition, 30

list, 91
replace method, 125
repr function, 144
representation, 147, 149, 171
return statement, 44, 51, 199
return value, 17, 26, 51, 150

tuple, 117
reverse lookup, 112
reverse lookup, dictionary, 106
reverse word pair, 101
reversed function, 121
rotation

letters, 113
rotation, letter, 80
rubber duck debugging, 134
running pace, 8, 15, 160
running Python, 2
runtime error, 14, 44, 46, 193, 196
RuntimeError, 45, 58

safe language, 14
sanity check, 111
scaffolding, 53, 60, 112

220 Index

scatter, 118, 123, 191
Schmidt, Eric, 201
Scrabble, 123
script, 11, 14
script mode, 11, 14, 24
search, 107, 205, 209
search pattern, 75, 79, 85, 186
search, binary, 101
search, bisection, 101
self (parameter name), 163
semantic error, 14, 15, 193, 198
semantics, 15, 162
sequence, 4, 71, 79, 89, 94, 115, 121
set, 130, 186

anagram, 123, 145
set membership, 113
set subtraction, 186
setdefault, 189
setdefault method, 113
sexagesimal, 158
shallow copy, 152, 153
shape, 123
shape error, 122
shell, 142, 145
shelve module, 142
shuffle function, 175
sine function, 18
singleton, 108, 112, 115
slice, 79

copy, 74, 92
list, 91
string, 73
tuple, 116
update, 92

slice operator, 73, 79, 91, 98, 116
sort method, 92, 99, 176
sorted

function, 99, 106
sorted function, 121
sorting, 204, 205
special case, 87, 157
special value

False, 40
None, 24, 26, 52, 92, 94
True, 40

spiral, 38
split method, 95, 117
sqrt, 53
sqrt function, 18
square root, 66

squiggly bracket, 103
stable sort, 205
stack diagram, 23, 26, 37, 44, 56, 60, 97
state diagram, 9, 14, 63, 78, 90, 96, 108, 120,

148, 150, 152, 155, 173
statement, 10, 14

assert, 159, 160
assignment, 9, 63
break, 66
compound, 41
conditional, 41, 47, 55, 184
for, 30, 72, 91
global, 110, 112
if, 41
import, 26, 144
pass, 41
print, 3, 7, 165, 197
raise, 107, 112, 159
return, 44, 51, 199
try, 140, 153
while, 64

step size, 79
StopIteration, 185
str function, 18
__str__ method, 165, 174
string, 4, 7, 94, 121

accumulator, 175
comparison, 77
empty, 95
immutable, 74
method, 75
multiline, 35, 194
operation, 12
slice, 73
triple-quoted, 35

string concatenation, 204
string method, 79
string methods, 204
string module, 125
string representation, 144, 165
string type, 4
strip method, 84, 125
structshape module, 122
structure, 5
subject, 163, 169
subset, 187
subtraction

dictionary, 129
with borrowing, 68

subtraction with borrowing, 159

Index 221

suffix, 131
suit, 171
sum, 185
sum function, 118
superstitious debugging, 200
swap pattern, 116
syntax, 5, 7, 13, 162, 194
syntax error, 13, 15, 193
SyntaxError, 19

temporary variable, 51, 60, 199
test case, minimal, 198
testing

and absence of bugs, 87
incremental development, 52
is hard, 87
knowing the answer, 53
leap of faith, 57
minimal test case, 198

text
plain, 83, 125
random, 131

text file, 145
Time class, 155
time module, 101
token, 5, 7
traceback, 24, 26, 44, 46, 107, 196
translate method, 125
traversal, 72, 75, 77, 79, 85, 93, 100, 105, 106,

119, 127
dictionary, 168
list, 91

traverse
dictionary, 120

triangle, 48
trigonometric function, 18
triple-quoted string, 35
True special value, 40
try statement, 140, 153
tuple, 115, 117, 121, 122

as key in dictionary, 120, 132
assignment, 116
comparison, 116, 174
in brackets, 120
singleton, 115
slice, 116

tuple assignment, 117, 119, 122
tuple function, 115
tuple methods, 204
Turing complete language, 55

Turing Thesis, 55
Turing, Alan, 55
turtle typewriter, 37
TurtleWorld, 48
type, 4, 7

bool, 40
dict, 103
file, 137
float, 4
function, 20
int, 4
list, 89
NoneType, 24
programmer-defined, 147, 153, 155, 162,

165, 173
set, 130
str, 4
tuple, 115

type checking, 58
type conversion, 17
type function, 153
type-based dispatch, 166, 167, 169
TypeError, 72, 74, 108, 116, 118, 139, 164, 197
typewriter, turtle, 37
typographical error, 134

UnboundLocalError, 110
underscore character, 10
uniqueness, 101
Unix command

ls, 142
update, 64, 67, 69

database, 141
global variable, 110
histogram, 127
item, 91
slice, 92

update method, 120
update operator, 93
use before def, 20

value, 4, 7, 95, 96, 112
default, 129
tuple, 117

ValueError, 46, 117
values method, 104
variable, 9, 14

global, 110
local, 22
temporary, 51, 60, 199

222 Index

updating, 64
variable-length argument tuple, 118
veneer, 175, 180
void function, 24, 26
void method, 92
vorpal, 55

walk, directory, 140
while loop, 64
whitespace, 46, 84, 144, 194
word count, 143
word frequency, 125, 134
word, reducible, 113, 124
working directory, 139
worst bug, 170
worst case, 202, 209

zero, index starting at, 71
zero, index starting at, 90
zip function, 118

use with dict, 120
zip object, 123
Zipf’s law, 134

	Preface
	The way of the program
	What is a program?
	Running Python
	The first program
	Arithmetic operators
	Values and types
	Formal and natural languages
	Debugging
	Glossary
	Exercises

	Variables, expressions and statements
	Assignment statements
	Variable names
	Expressions and statements
	Script mode
	Order of operations
	String operations
	Comments
	Debugging
	Glossary
	Exercises

	Functions
	Function calls
	Math functions
	Composition
	Adding new functions
	Definitions and uses
	Flow of execution
	Parameters and arguments
	Variables and parameters are local
	Stack diagrams
	Fruitful functions and void functions
	Why functions?
	Debugging
	Glossary
	Exercises

	Case study: interface design
	The turtle module
	Simple repetition
	Exercises
	Encapsulation
	Generalization
	Interface design
	Refactoring
	A development plan
	docstring
	Debugging
	Glossary
	Exercises

	Conditionals and recursion
	Floor division and modulus
	Boolean expressions
	Logical operators
	Conditional execution
	Alternative execution
	Chained conditionals
	Nested conditionals
	Recursion
	Stack diagrams for recursive functions
	Infinite recursion
	Keyboard input
	Debugging
	Glossary
	Exercises

	Fruitful functions
	Return values
	Incremental development
	Composition
	Boolean functions
	More recursion
	Leap of faith
	One more example
	Checking types
	Debugging
	Glossary
	Exercises

	Iteration
	Reassignment
	Updating variables
	The while statement
	break
	Square roots
	Algorithms
	Debugging
	Glossary
	Exercises

	Strings
	A string is a sequence
	len
	Traversal with a for loop
	String slices
	Strings are immutable
	Searching
	Looping and counting
	String methods
	The in operator
	String comparison
	Debugging
	Glossary
	Exercises

	Case study: word play
	Reading word lists
	Exercises
	Search
	Looping with indices
	Debugging
	Glossary
	Exercises

	Lists
	A list is a sequence
	Lists are mutable
	Traversing a list
	List operations
	List slices
	List methods
	Map, filter and reduce
	Deleting elements
	Lists and strings
	Objects and values
	Aliasing
	List arguments
	Debugging
	Glossary
	Exercises

	Dictionaries
	A dictionary is a mapping
	Dictionary as a collection of counters
	Looping and dictionaries
	Reverse lookup
	Dictionaries and lists
	Memos
	Global variables
	Debugging
	Glossary
	Exercises

	Tuples
	Tuples are immutable
	Tuple assignment
	Tuples as return values
	Variable-length argument tuples
	Lists and tuples
	Dictionaries and tuples
	Sequences of sequences
	Debugging
	Glossary
	Exercises

	Case study: data structure selection
	Word frequency analysis
	Random numbers
	Word histogram
	Most common words
	Optional parameters
	Dictionary subtraction
	Random words
	Markov analysis
	Data structures
	Debugging
	Glossary
	Exercises

	Files
	Persistence
	Reading and writing
	Format operator
	Filenames and paths
	Catching exceptions
	Databases
	Pickling
	Pipes
	Writing modules
	Debugging
	Glossary
	Exercises

	Classes and objects
	Programmer-defined types
	Attributes
	Rectangles
	Instances as return values
	Objects are mutable
	Copying
	Debugging
	Glossary
	Exercises

	Classes and functions
	Time
	Pure functions
	Modifiers
	Prototyping versus planning
	Debugging
	Glossary
	Exercises

	Classes and methods
	Object-oriented features
	Printing objects
	Another example
	A more complicated example
	The init method
	The __str__ method
	Operator overloading
	Type-based dispatch
	Polymorphism
	Debugging
	Interface and implementation
	Glossary
	Exercises

	Inheritance
	Card objects
	Class attributes
	Comparing cards
	Decks
	Printing the deck
	Add, remove, shuffle and sort
	Inheritance
	Class diagrams
	Debugging
	Data encapsulation
	Glossary
	Exercises

	The Goodies
	Conditional expressions
	List comprehensions
	Generator expressions
	any and all
	Sets
	Counters
	defaultdict
	Named tuples
	Gathering keyword args
	Glossary
	Exercises

	Debugging
	Syntax errors
	Runtime errors
	Semantic errors

	Analysis of Algorithms
	Order of growth
	Analysis of basic Python operations
	Analysis of search algorithms
	Hashtables
	Glossary

